Abstract:
An improved process is disclosed for producing ethylene oxide; the process utilizing suitable semipermeable membrane units to selectively remove desired amounts of both carbon dioxide and argon diluents from the reaction recycle gas. The utilization of such a process makes possible to utilize a much cheaper low purity oxygen source without concern for feed purge losses.
Abstract:
A supported silver catalyst for the oxidation of ethylene with molecular oxygen to ethylene oxide is made by depositing silver on a support capable of selectively adsorbing alkali metals, activating the silver under conditions chosen to provide the optimum selectivity of ethylene oxide and thereafter depositing an amount of an alkali metal sufficient to increase selectivity of the silver catalyst above its alkali-free state. The catalyst most preferably employs a ceramic support having a surface area of 0.3-0.8 m.sup.2 /gm. The amount of alkali metal on the finished catalyst is most preferably 50-300 ppm by weight. The catalyst may also include additional promoters, such as the alkaline earth metals, preferably barium.
Abstract:
Alkylene carbonates, particularly ethylene carbonate, are prepared by the reaction of an alkylene oxide with carbon dioxide in the presence of a catalyst at temperatures ranging upwards from 20.degree. C., particularly temperatures above about 90.degree. C., preferably 90.degree.-170.degree. C. The conversion of alkylene oxide to alkylene carbonate can be carried out in the presence of water while minimizing the undesirable hydrolysis of the carbonate to the corresponding alkylene glycol and formation of higher glycols. This is achieved by maintaining the water to alkylene oxide molar ratio and the carbon dioxide to alkylene oxide ratio within the stated limits and adjusting the carbon dioxide partial pressure to provide the desired selectivity to alkylene carbonate.
Abstract:
A supported silver catalyst selective to the formation of ethylene oxide in the reaction of ethylene with molecular oxygen is made by depositing an amount of an alkali metal sufficient to depress the activity and selectivity of the silver catalyst below that of its alkali-free state and thereafter heating the alkali metal-containing catalyst in a substantially oxygen-free atmosphere to reactivate it. In one embodiment, a large amount of alkali metal is deposited which removes substantially all activity from the silver catalyst and then activity and selectivity for oxidation of ethylene to ethylene oxide is recovered and enhanced by heating the catalyst in a nitrogen atmosphere to a temperature above 400.degree. C. for a sufficient period of time.
Abstract:
A process for the preparation of ethylene oxide in which a conventional ethylene oxide process is modified by supplement with a second chiller and a tempered water system.
Abstract:
Oxalic acid is employed in a precursor mixture containing at least one milled alpha alumina powder having a particle size of 0.1 to 6 microns, boehmite powder that functions as a binder of the alpha alumina powders, and at least one burnout material having a particle size of 1-10 microns to provide a porous body having enhanced pore architecture in which extrusion cracks can be reduced. The presence of oxalic acid in such as precursor mixture can reduce and even eliminate NOx emission during a high temperature heat treatment process.
Abstract:
A method for producing a catalyst effective in the oxidative conversion of ethylene to ethylene oxide, the method comprising: (i) impregnating a porous refractory carrier with a sub-catalytic level of silver ion in a range of 0.1 wt % to 1 wt % of silver by weight of the carrier and silver, and at least partially reducing said silver ion to elemental silver to produce a low-silver catalyst precursor having isolated silver atoms or silver nanoparticles on surfaces of said refractory carrier; and (ii) further impregnating the low-silver catalyst precursor with a catalytic amount of silver ion of at least 10 wt % total amount of silver and at least one promoting species by weight of the carrier and silver, and subjecting the further impregnated carrier to an elevated temperature of at least 200° C. to completely reduce silver ion to elemental silver in the carrier. The low-silver catalyst precursor produced in step (i) is also described in detail. Methods for using the catalyst produced in step (ii) for the oxidative conversion of ethylene to ethylene oxide are also described.
Abstract:
The present disclosure is directed to the preparation of silver-based HSCs. During preparation of the catalyst a selected carrier is co-impregnated with a solution containing a catalytically effective amount of silver and a promoting amount of rhenium and other promoters. After co-impregnation, the carrier is subjected to a separate heat treatment prior to calcination. Such heat treatment is conducted for between about 1 minute and about 120 minutes at temperatures between about 40° C. and about 300° C. Catalysts prepared by the present methodology evidence improved selectivity, activity and/or stability resulting in an increase in the useful life of the catalyst.
Abstract:
A porous body with enhanced fluid transport properties and crush strength is provided. The porous body includes the porous body includes at least 80 percent alpha alumina and having a pore volume from 0.3 mL/g to 1.2 mL/g, a surface area from 0.3 m2/g to 3.0 m2/g, and a pore architecture that provides at least one of a tortuosity of 7 or less, a constriction of 4 or less and a permeability of 30 mdarcys or greater, wherein the porous body is a cylinder comprising at least two spaced apart holes that extend through an entire length of the cylinder. The porous body has a flat plate crush strength improved by more than 10% over a porous body cylinder having a same outer diameter and length, but having only a single hole.
Abstract:
A method for producing a catalyst effective in the oxidative conversion of ethylene to ethylene oxide, the method comprising: (i) impregnating a porous refractory carrier with a sub-catalytic level of silver ion in a range of 0.1 wt % to 1 wt % of silver by weight of the carrier and silver, and at least partially reducing said silver ion to elemental silver to produce a low-silver catalyst precursor having isolated silver atoms or silver nanoparticles on surfaces of said refractory carrier; and (ii) further impregnating the low-silver catalyst precursor with a catalytic amount of silver ion of at least 10 wt % total amount of silver and at least one promoting species by weight of the carrier and silver, and subjecting the further impregnated carrier to an elevated temperature of at least 200° C. to completely reduce silver ion to elemental silver in the carrier. The low-silver catalyst precursor produced in step (i) is also described in detail. Methods for using the catalyst produced in step (ii) for the oxidative conversion of ethylene to ethylene oxide are also described.