Abstract:
It is an object to provide an image reading apparatus for facilitating an optical adjustment of a mirror in supporting a carriage installed with the mirror on right and left rail faces to enable the carriage to move along a platen.In an apparatus configuration where first and second carriages 3, 4 moving along an original document image on a platen at predetermined velocities guide reflected light from the original document to an image reading means 11, the first carriage 3 supports one side edge portion of a mirror with first and second mirror support portions 32a, 32b and the other side edge portion with a third mirror support portion 32c, and thus supports the mirror by three points. Then, opposite side edge portions of the first carriage are supported slidably on right and left paired rail members 5a, 5b via slide members 33a to 33d disposed at four right and left places including two front and back places. At least one of the slide members 33c, 33d, at two front and back places disposed on the third mirror support portion side for supporting the first mirror by one point, is supported to be adjustable in height portion using an adjustment screw or the like.
Abstract:
An optical unit including a lens unit including a lens and an optical element configured to receive a light beam focused by the lens, and a support member configured to support the lens unit. Cutouts are provided on joint surfaces of the lens unit and the support member, respectively, such that the cutouts on the joint surface of the lens unit match the cutouts on the joint surface of the support member. The cutouts are configured to accommodate a jig inserted thereinto and rotated to move the lens unit relative to the support member and adjust a position of the lens unit in a direction parallel to an optical axis of the lens.
Abstract:
Disclosed is an image reader, which comprises a circuit board (36) designed to mount, to the same surface thereof, an image pickup device (34) and an IC device (128). The circuit board (36) is fixedly fastened to horizontally opposite ends of a board support plate (114) by a fastening member (120), in such a manner that it is in contact with a plurality of protrusion members (116, 118) provided at respective positions around a window (112) of a rear surface of the board support plate (114), while allowing a light-receiving surface of the image pickup device (34) to face an imaging lens (38).
Abstract:
A scanning device includes a scanner body, a scanning unit, a lens unit, a sensing unit, and a fastening unit. The scanner body has a bottom surface that is formed with two slots. The fastening unit includes two first fastening members disposed respectively within the slots, and two second fastening members engaging respectively and threadably the first fastening members so as to fasten the sensing unit to the scanner body.
Abstract:
An image reading unit includes an image sensor for converting light from a document into an electric signal, and a circuit board provided with the image sensor on one side. In the image reading unit, a heat dissipating member for controlling a temperature of the image sensor is attached to one side of the circuit board, and a shield member for reducing a noise is provided on the other side of the circuit board. The heat dissipating member and the shield member are connected by a heat conductive member. Also, the heat dissipating member is interposed between the image sensor and the circuit board.
Abstract:
A mounting structure for an inverter circuit board for a light source lamp of an image reader in which mounting means for mounting the inverter circuit board for a light source lamp of an image reader onto a carriage is located to be operated from the direction in which the carriage moves in one embodiment. The inverter circuit and heat dissipation plate are removably mounted to an end of the full rate carriage. In another embodiment, the circuit board is mounted to the top for access from above the carriage.
Abstract:
An image reading unit includes an image sensor for converting light from a document into an electric signal, and a circuit board provided with the image sensor on one side. In the image reading unit, a heat dissipating member for controlling a temperature of the image sensor is attached to one side of the circuit board, and a shield member for reducing a noise is provided on the other side of the circuit board. The heat dissipating member and the shield member are connected by a heat conductive member. Also, the heat dissipating member is interposed between the image sensor and the circuit board.