Abstract:
The disclosure is related to battery systems. More specifically, embodiments of the disclosure provide a nanostructured conversion material for use as the active material in battery cathodes. In an implementation, a nanostructured conversion material is a glassy material and includes a metal material, one or more oxidizing species, and a reducing cation species mixed at a scale of less than 1 nm. The glassy conversion material is substantially homogeneous within a volume of 1000 nm3.
Abstract:
A method is provided for the self-repair of a transition metal cyanometallate (TMCM) battery electrode. The battery is made from a TMCM cathode, an anode, and an electrolyte including solution formed from a solvent and an alkali or alkaline earth salt. The electrolyte includes an additive represented as G-R-g: where G and g are independently include materials with nitrogen (N) sulfur (S), oxygen (O), or combinations of the above-recited elements; and where R is an alkene or alkane group. In response to charging and discharging the battery in a plurality of cycles, the method creates vacancies in a surface of the TMCM cathode. Then, the method fills the vacancies in the surface of the TMCM cathode with the electrolyte additive. An electrolyte and TMCM battery using the above-mentioned additives are also provided.
Abstract:
A non-aqueous liquid electrolyte secondary battery using negative-electrode active material having Si, Sn and/or Pb, with high charge-capacity, superior characteristics including discharge-capacity retention rate over long is provided. The non-aqueous liquid electrolyte of the battery contains carbonate having unsaturated bond and/or halogen and and an anhydride compound.
Abstract:
An object is to improve characteristics of a power storage device. The present invention relates to an electricity storage device comprising a current collector and a negative electrode-active material layer formed over the current collector. The negative electrode-active material layer includes a negative electrode comprising a first negative electrode layer in contact with the current collector; a second negative electrode layer in contact with the first negative electrode layer, having a smaller capacitance than the first negative electrode layer and containing one material selected from a nitride of lithium and a transition metal represented by LiaMbNz (M is a transition metal, 0.1≦a≦2.8, 0.2≦b≦1 and 0.6≦z≦1.4), a silicon material, and lithium titanate; a positive electrode that is paired with the negative electrode; and a solid electrolyte interposed between the positive electrode and the negative electrode.
Abstract:
A method for producing an electrode of a lithium-ion battery having the steps of providing a precursor including an electrode active material and LiF, of providing a metal foil and of joining the precursor and the metal foil. Furthermore, a method for producing a lithium-ion battery is provided as well as electrodes and lithium-ion batteries that are producible according to the method.
Abstract:
A battery structure is provided for making alkali ion and alkaline-earth ion batteries. The battery has a hexacyanometallate cathode, a non-metal anode, and non-aqueous electrolyte. A method is provided for forming the hexacyanometallate battery cathode and non-metal battery anode prior to the battery assembly. The cathode includes hexacyanometallate particles overlying a current collector. The hexacyanometallate particles have the chemical formula A′n′AmM1xM2y(CN)6, and have a Prussian Blue hexacyanometallate crystal structure.
Abstract:
A solid, ionically conductive, non-electrically conducting polymer material with a plurality of monomers and a plurality of charge transfer complexes, wherein each charge transfer complex is positioned on a monomer.
Abstract:
A method for fabricating intercalated lithium batteries in open air deposits a thin dense layer of amorphous solid-state lithium boride electrolyte directly onto a negative electrode via flame spray pyrolysis. In one embodiment, the negative electrode is attached to a prefabricated positive electrode via hot pressing (embossing), thus forming an intercalated lithium battery. The method significantly improves upon current methods of fabricating thin film solid state batteries by permitting fabrication without the aid of a controlled environment, thereby allowing for significantly cheaper fabrication than prior batch methods.
Abstract:
A method is presented for fabricating an anode preloaded with consumable metals. The method provides a material (X), which may be one of the following materials: carbon, metals able to be electrochemically alloyed with a metal (Me), intercalation oxides, electrochemically active organic compounds, and combinations of the above-listed materials. The method loads the metal (Me) into the material (X). Typically, Me is an alkali metal, alkaline earth metal, or a combination of the two. As a result, the method forms a preloaded anode comprising Me/X for use in a battery comprising a M1YM2Z(CN)N.MH2O cathode, where M1 and M2 are transition metals. The method loads the metal (Me) into the material (X) using physical (mechanical) mixing, a chemical reaction, or an electrochemical reaction. Also provided is preloaded anode, preloaded with consumable metals.