Abstract:
The memory size and processing time for the correction of image data carried out to reduce image deterioration caused by nozzle ejection characteristic variation in an inkjet printing apparatus can be minimized. Print heads are provided with pluralities of chips that have nozzle arrays formed from a plurality of nozzles. Overlap portions and non-overlap portions are formed on each chip. An image processing apparatus sets input image data, corresponding to nozzle regions that are defined in nozzle arrays along the alignment direction of the nozzles of the print head and that are composed of a plurality of nozzles, as processing blocks. The input image data is processed according to parameters defined for each of those processing blocks. The boundaries of the nozzle regions corresponding to the input image data of the processing blocks are established according to the boundaries of the overlap portions and the non-overlap portions.
Abstract:
A printing device using a print head ejecting ink from a plurality of nozzles to print ink dots of a plurality of dot diameters, includes a print-characteristic acquisition unit obtaining print characteristic information on dot diameters of ink dots to be printed per each predetermined portion of the plurality of nozzles, a distribution ratio determination unit determining a distribution ratio for distributing image data to the predetermined portions of the plurality of nozzles based on the information, a dot print position determination unit quantizing the image data to determine a dot print position based on the image data and sizes and an array of thresholds; and a plurality of masks based on dot distribution order determined according to the distribution ratio, distributing printing of each of the ink dots of the plurality of dot diameters to the dot print position determined by the dot print position determination unit.
Abstract:
A method for monitoring stitching between two adjacent printheads includes capturing one or more images of content printed on a moving print media in at least a stitch boundary or overlap region to obtain pixel data. The pixel data is then averaged in a media transport direction to produce blur in an image or images. Derivative data of the averaged pixel data is determined and one or more peaks is detected in the derivative data. A type of stitching artifact is determined based on the detected peak in the derivative data.
Abstract:
A laser scanning assembly generates a laser beam and scans the laser beam through a plurality of scan lines to form desired dots. Each scan line is positioned to overlap an adjacent scan line and each dot includes a plurality of segments. The scanning assembly scans the laser beam through multiple scan lines to fully discharge each segment of each dot. The laser scanner assembly would typically be part of a laser printer.
Abstract:
A method for monitoring stitching between two adjacent printheads includes capturing one or more images of content printed on a moving print media in at least a stitch boundary or overlap region to obtain pixel data. The pixel data is then averaged in a media transport direction to produce blur in an image or images. Derivative data of the averaged pixel data is determined and one or more peaks is detected in the derivative data. A type of stitching artifact is determined based on the detected peak in the derivative data.
Abstract:
A laser scanning assembly generates a laser beam and scans the laser beam through a plurality of scan lines to form desired dots. Each scan line is positioned to overlap an adjacent scan line and each dot includes a plurality of segments. The scanning assembly scans the laser beam through multiple scan lines to fully discharge each segment of each dot. The laser scanner assembly would typically be part of a laser printer.
Abstract:
An image recording device comprising a line head including a plurality of recording element arrays arranged in one direction such that the recording elements have overlapping regions at the mutually adjoining end portions, characterized by comprising a halftone processor for subjecting multilevel image data to a halftone process in accordance with a first half tone processing rule to form the pattern of the dots to be recorded, as a recording pattern, an allocation processor for allocating which of the recording element arrays adjoining in the overlapping regions is used to record according to the recording pattern, by using a second half tone processing rule to suppress the low-frequency component of a space frequency, and a driver for driving the recording elements so that the dot data allocated to the individual recording element arrays may be recorded by the recording elements of the individual recording element arrays contained in the line head.
Abstract:
A data processing apparatus determines a color range based on a dot counting value of a number of colors smaller than a number of colors subjected to thinning processing. Thus, even if the number of ink colors subjected to the thinning processing is great, a processing load of the determination of the color range can be reduced.
Abstract:
A method of generating half tone print data is disclosed. The method starts by determining an extent of overlap caused by temperature variations of overlapping end portions of a pair of consecutive printhead segments. A dither value is also generated from a dither matrix, and the dither value is combined with the extent of overlap to produce an output value. A mathematical operation is performed on continuous tone print data based on the output value, to produce the half tone print data.
Abstract:
A method for pen drop weight calibration includes altering an image prior to printing based on the difference in printing performance of a first pen and a second pen to produce altered image data, the first pen and the second pen being disposed in the same printer. The altered image data is then printed with the printer.