摘要:
A display device includes: an optical cell including: a first electrode; a second electrode; an ion conduction layer facing the first electrode and the second electrode and containing a mobile ion; and a first nanostructure provided between the first electrode and the ion conduction layer and being electrically connected to the first electrode. The first nanostructure has a first plasmon resonance wavelength in a visible light region and contains a first metal element. A first metal compound layer which contains the first metal element contained in the first nanostructure and has a refractive index different from a refractive index of the ion conduction layer is formed on at least a part of a surface of the first nanostructure by applying a voltage between the first electrode and the second electrode. An amount of the first metal compound layer is different between in a first state in which a first voltage is applied between the first electrode and the second electrode and in a second state in which a second voltage different from the first voltage is applied between the first electrode and the second electrode.
摘要:
A surface plasmon polariton modulator capable of locally varying a physical property of a dielectric material to control a surface plasmon polariton. The surface plasmon polariton modulator includes a dielectric layer, including first and second dielectric portions, which is interposed between two metal layers. The second dielectric portion has a refractive index which varies with an electric field, a magnetic field, heat, a sound wave, or a chemical and/or biological operation applied thereto. The surface plasmon polariton modulator is configured to control one of an advancing direction, an intensity, a phase, or the like of a surface plasmon using an electric signal. The surface plasmon polariton modulator can operate as a surface plasmon polariton multiplexer or a surface plasmon polariton demultiplexer.
摘要:
Provided is a small-size optical phase modulation element and an optical modulator using it. The optical phase modulation element includes a Plasmon waveguide having a clad made of a metal material having a complex dielectric constant having a negative real part in the used wavelength and a core formed by a dielectric metal material having a complex dielectric constant having a positive real part in the used wavelength. The Plasmon waveguide is connected to an optical waveguide including a clad and a core both having a complex dielectric constant having a positive real part. The core of the Plasmon waveguide and the core of the optical waveguide are formed, at least partially, of the same semiconductor material. The Plasmon waveguide has a function to phase-modulate the incident light when voltage is applied.
摘要:
A subwavelength terahertz (THz) switch using an artificially designed conductor metamaterial is discussed in this invention. Theoretically, slow-light EM wave propagating at THz speed imitates the strongly localized surface plasmon modes and henceforth is called Spoof Surface Plasmon Polariton (SSPP) mode in this invention. The SSPP mode of slow-light EM propagation can be easily tailored by changing the refractive index of the dielectric materials inside the metallic gap structure engineered as a periodic array of grooves. Thus, the incorporation of electro-optical material which has birefringence such as a nematic liquid crystal (N-LC) or multiple-refractive indices into the metallic gap leads to a highly compact and efficient terahertz switch being controlled by a low-voltage signal. The optimal design of the SSPP switch enabled by this novel method shows many interesting properties including 1) strong subwavelength localization; 2) relatively high extinction (On/Off switching) ratio; and 3) small damping attenuation. The THz dynamic switches can be used to construct linear switches, Y junction switches and Mach-Zehnder interferometers by using micromachining and other fabrication techniques.
摘要:
A plasmonic transistor device includes an electro-optic substrate and a conductive layer placed on said electro-optic substrate to establish an interface therebetween. The first conductive layer and electro-optics substrate are made of materials that are suitable for transmission of a surface plasmon along the interface. The conductive layer is further formed with a source input grating and a drain output grating, for establishing the surface plasmon. A means for varying the electro-optic substrate permittivity, such as a light source or voltage source, is connected to the electro-optic substrate. Selective manipulation of the varying means allows the user to selectively increase or decrease the substrate permittivity. Control of the substrate permittivity further allows the user to control surface plasmon propagation from the source input grating along the interface to a drain output grating, to achieve a transistor-like effect for the surface plasmon.
摘要:
Disclosed herein is a laptop-size high-order harmonic generation apparatus using near field enhancement. The laptop-size high-order harmonic generation apparatus using near field enhancement includes a femtosecond laser generator, light transfer means for transferring light output from the femtosecond laser generator, micro patterns formed of metallic thin films and configured to have nano-sized apertures for generating near field enhancement when the light output from the light transfer means passes through the micro patterns, a gas supply unit for supplying inert gas to the light when the light transferred through the light transfer means passes through the micro patterns, and a vacuum chamber for accommodating the micro patterns and the gas supply unit under a vacuum atmosphere.
摘要:
A color filter using a surface plasmon includes a metal layer; and a transmissive pattern formed in the metal layer, the transmissive pattern comprising a plurality of sub-wavelength holes having a period, wherein a desired color of light is output by selectively transmitting light of a specific wavelength by using the surface plasmon, and the plurality of sub-wavelength holes are arranged in a triangular lattice having a predetermined number of nearest neighboring holes with respect to a central hole.
摘要:
Nanoplatelet forms of metal hydroxide and metal oxide are provided, as well as methods for preparing same. The nanoplatelets are suitable for use as fire retardants and as agents for chemical or biological decontamination.
摘要:
A frequency-conversion method that uses a nonlinear optical process to transfer energy between a surface-plasmon (SP) wave that is guided along an electrically conducting strip and a light beam that is guided along an optical waveguide whose core is adjacent to the electrically conducting strip. A periodic structure spatially modulates the nonlinear susceptibility of the waveguide core with a spatial period that is related to a momentum mismatch in the nonlinear optical process. The spatial modulation provides quasi-phase matching for the SP wave and the light beam and enables efficient energy transfer between them.
摘要:
This invention provides fundamental science and novel device architectures for surface plasmon (SP)-based, complementary metal oxide semiconductor (CMOS)-compatible, optical elements such as modulators, couplers, and switches. The primary focus of the work is on waveguides based on an ultra-long-range surface plasmon (ULRSP) waveguide mode recently discovered by our team. This mode exists at the metal-dielectric interfaces in a silicon-oxide-metal-silicon layer structure. While initial work focuses on noble metals to support the ULRSP, our analysis shows Si processing-compatible metals such as Cu and Al can also be used. Our modeling has also shown that variation in the thickness of the oxide layer can be used to give unprecedented propagation lengths in such structures. Electrically-induced free carrier modulation of the dielectric constant in the Si adjacent to the oxide can modulate the waveguide properties allowing novel Si-compatible electro-optic devices to be created. These waveguides function as the “wiring” in new classes of optical chips. This invention also provides integration of ULRSP waveguides and switches with other optical elements to create entirely new classes of hybrid optoelectronic technologies for defense applications. These range from chip-based chemical agent detection to extremely high performance processors and even all-optical computations.