Thickness error compensation for digital gradient-index optical coatings
    52.
    发明授权
    Thickness error compensation for digital gradient-index optical coatings 失效
    数字梯度折射率光学涂层的厚度误差补偿

    公开(公告)号:US4778251A

    公开(公告)日:1988-10-18

    申请号:US23587

    申请日:1987-03-09

    IPC分类号: G02B1/10 G02B5/08

    CPC分类号: G02B5/0883

    摘要: A method of fabricating an optical coating includes a layer pair, with a layer of a first optical material having a first refractive index and a first nominal thickness and a layer of a second optical material having a second refractive index and a second nominal thickness. The first layer is deposited, then its actual thickness is measured. A target thickness for the second layer is determined so that the optical properties of the combined actual first layer and target second layer are substantially the same as the optical properties of the combined nominal first layer and nominal second layer. The second layer is then deposited. Where the optical coating further includes a plurality of layer pairs, the steps of depositing, measuring, determining, and depositing are repeated for each of the layer pairs in the pairwise approach. Alternatively, in the layer-to-layer approach, for each layer pair after the initial layer pair the actual thickness of the second layer in the preceding layer pair is measured and a target thickness for the first layer is determined so that the optical properties of the combined actual preceding second layer and target first layer are substantially the same as the optical properties of the combined nominal preceding second layer and nominal first layer. The first layer is then deposited and its actual thickness measured. A target thickness for the second layer is determined so that the optical properties of the combined actual first layer and target second layer are substantially the same as the optical proGOVERNMENT RIGHTSThe United States Government has rights in this invention pursuant to a contract awarded by the United States Air Force.

    摘要翻译: 制造光学涂层的方法包括层对,其具有第一光学材料的层,其具有第一折射率和第一标称厚度,以及具有第二折射率和第二标称厚度的第二光学材料层。 沉积第一层,然后测量其实际厚度。 确定第二层的目标厚度,使得组合的实际第一层和目标第二层的光学性质基本上与组合的标称第一层和标称第二层的光学性质相同。 然后沉积第二层。 在光学涂层还包括多个层对的地方,对于成对方法中的每个层对重复沉积,测量,确定和沉积的步骤。 或者,在层间方法中,对于初始层对之后的每层对,测量前一层对中的第二层的实际厚度,并且确定第一层的目标厚度,使得光学性质 组合的实际在前的第二层和目标第一层基本上与组合的标称的前面的第二层和标称的第一层的光学性质相同。 然后沉积第一层,并测量其实际厚度。 确定第二层的目标厚度,使得组合的实际第一层和目标第二层的光学性质与组合的标称第一层和标称第二层的光学性质基本相同,然后沉积第二层。

    Heat absorbing reflector utilizing a metallic substrate
    53.
    发明授权
    Heat absorbing reflector utilizing a metallic substrate 失效
    热吸收反应器利用金属基板

    公开(公告)号:US3645600A

    公开(公告)日:1972-02-29

    申请号:US3645600D

    申请日:1970-11-03

    申请人: BAUSCH & LOMB

    IPC分类号: G02B5/08 G02B5/26 G02B5/28

    CPC分类号: G02B5/0883 G02B5/26 G02B5/282

    摘要: A reflector, for reflecting generally all wavelengths of radiation of visible light from a multilayer interference reflecting coating for generally concentrated projection of the visible light and for absorbing substantially all wavelengths of radiation of heat, is provided for by a metallic substrate having formed thereon, between it and the multilayer interference reflecting coating, an antireflection coating having a continuously graded refractive index for transmission therethrough of wavelengths of heat radiation for absorption into the metallic substrate.

    摘要翻译: 用于反射来自多层干涉反射涂层的所有波长的可见光的波长的反射器用于可见光的大致集中投影并用于吸收基本上所有波长的辐射热,由其上形成的金属基板提供, 它和多层干涉反射涂层,具有连续渐变折射率的抗反射涂层,用于透射其中用于吸收到金属基底中的热辐射波长。

    Lens module and camera
    54.
    发明授权

    公开(公告)号:US12047663B2

    公开(公告)日:2024-07-23

    申请号:US17077247

    申请日:2020-10-22

    摘要: A lens system and a camera, where the lens system includes a first refractive element, a second refractive element, a reflecting element, and a photosensitive element, where the first refractive element and the reflecting element are disposed along a direction of a first optical axis, the second refractive element and the reflecting element are disposed along a direction of a second optical axis, the first optical axis is perpendicular to the second optical axis, the second refractive element and the photosensitive element are disposed in parallel, an effective aperture diameter of the first refractive element is greater than an effective aperture diameter of the second refractive element in a height direction of the lens system, and the first optical axis is parallel to the height direction of the lens system.