Abstract:
A multi-port servo valve includes a valve plug within a valve body bore, where the plug has multiple holes radially positioned at different axial positions, and the bore has multiple ports, where the valve plug may be controlled to (i) align a first set of plug holes with a first set of bore ports to a first open position, (ii) align a second set of plug holes with a second set of bore ports to a second open position, and (iii) preclude alignment of the plug holes with the bore ports to a valve closed position. The system also includes a servo motor configured to control the position of the valve plug within the bore, and a programmable controller in electrical communication with the servo motor and a sensor associated with the hydraulic cylinder for automated operation.
Abstract:
The improved servovalve broadly (20) includes: a body (21) having an axis of elongation (y-y), a portion of the body defining a cylinder (43) having an axis (x-x) substantially perpendicular to the body axis; a valve member (44) movably mounted in the cylinder, and adapted to be moved off-null in either direction along the cylinder axis to selectively meter the flows of fluid between a plurality of ports defined between the spool and cylinder; a rotor (58) mounted on the body for rotation about the body axis; a motor (69) acting between the body and rotor, and selectively operable to cause the rotor to rotate in a desired angular direction relative to the body; and a quill-like transfer member (64) acting between the rotor and valve spool.
Abstract:
A liquid flow rate control valve is provided in which since a total area of overlapping sections of a communication hole group (38c, 38d) of a distributor (38) and an outlet opening (37a, 37b) of a sleeve (37) changes when the distributor (38) is rotated by a first electric motor (46), if a rotor (42) is rotated by means of a second electric motor (47), an input port (31e) communicates with an output port (31f) through an inlet opening (42c, 42d) of the rotor (42), the communication hole group (38c, 38d) of the distributor (38), and the outlet opening (37a, 37b) of the sleeve (37) when the inlet opening (42c, 42d) of the rotor (42) passes through the overlapping sections, thereby making it possible to carry out PWM control of a flow rate of liquid. Since a thrust load in an axis (L) direction does not act on the distributor (38) and the rotor (42), supporting the distributor (38) and the rotor (42) becomes easy, thereby enabling the cost and weight to be cut.
Abstract:
A stepper motor driven actuator that eliminates the need for a position sensor is provided. The stepper motor rotates a cam in a control piston valve. In a single nozzle embodiment, pressure balance is maintained by a spring preload on one end of the piston in one embodiment, and by hydraulic pressure acting on a double diameter end portion of the piston in another embodiment. As the cam is rotated, the change in the gap between the nozzle and the cam changes the pressures on the control piston ends, which forces the piston in the direction that will re-equalize the pressure based on the cam-nozzle gap. As a result, the head or rod of the actuator piston receives high pressure flow, thereby moving the actuator. Movement of the actuator rod provides mechanical feedback to the cam, causing the cam to move back to its mechanical null position.
Abstract:
Provided is a servovalve system for regulating fluid flowing within a fluid circuit. The servovalve system comprises a housing, a spool slidably disposed within the housing, a stepper motor operatively connected to the spool, and a controller and a position sensor electronically connected to the stepper motor. The controller generates driver signals representative of a desired amount of stepper motor rotation in order to cause the stepper motor to effectuate spool motion relative to the housing. The position sensor senses an actual amount of stepper motor rotation and generates a quantity of position signals representative thereof. The controller determines a signal ratio of the quantity of the position signals to the quantity of the driver signals and generates a diagnostic signal when the signal ratio reaches a threshold value representative of a predetermined level of mechanical resistance of spool motion relative to the housing.
Abstract:
A hydrostatic drive system with a pump and at least one consuming device that is connected to the pump can be actuated by a control valve. The control valve can be actuated as a function of an actuator that specifies a desired speed of movement and a direction of movement of the consuming device. The control valve in the center position, makes possible an unpressurized circulation of the pump. The control valve can be actuated electrically, and there is a sensor that measures the actual speed of movement of the consuming device. The control valve, the speed-of-movement sensor and the actuator are connected with an electronic control that controls the control valve as a function of the direction and speed of movement specified by the deflection of the actuator and of the actual speed of movement of the consuming device as measured by the speed-of-movement sensor. The speed-of-movement sensor may be a delivery flow sensor.
Abstract:
A rotary solenoid valve for controlling pressurized fluid in a vehicular hydraulic system includes a housing having a bore. A valve body is mounted in the bore. The valve body includes an axial bore in fluid communication with a supply port, an output port, and a reservoir port. Each of the ports in the valve body is also in fluid communication with a corresponding fluid passage formed in the housing. A rotor is received in the axial bore of the valve body. The rotor includes at least one flat having a predetermined length so that the flat is in fluid communication with the ports in the valve body. An upper stator is mounted on the valve body about the rotor. A coil is mounted about the upper stator for generating a magnetic field to selectively rotate the rotor. Rotation of the rotor directs fluid through the valve between various ports as desired.