Abstract:
In an organic light-emitting display apparatus and a method of manufacturing the same, the organic light-emitting display apparatus comprises: at least one transistor, each including a semiconductor layer, a gate electrode, and source and drain electrodes; a first capacitor including a first electrode formed on the same plane as the semiconductor layer, a second electrode formed on the same plane as the gate electrode, and a third electrode formed on the same plane as the source and drain electrodes; a second capacitor including a first electrode formed on the same plane as the semiconductor layer and comprising ion impurities, and a second electrode formed on the same plane as the gate electrode; a pixel electrode formed on the same plane as the gate electrode and electrically connected to the transistor; a light-emitting layer disposed on the pixel electrode; and an opposite electrode disposed on the light-emitting layer and facing the pixel electrode.
Abstract:
Disclosed is an organic light emitting display. In the organic light emitting display, a substrate is divided into a display region, in which an image is displayed, and a non-display region surrounding the display region. The organic light emitting display includes a plurality of pixels provided on the display region. At least one thin film transistor is formed on the non-display region. The display region includes a first electrode connected to the thin film transistor, an organic light emitting layer formed on the first electrode, and a second electrode formed on the organic light emitting layer to apply voltage to the organic light emitting layer with the first electrode. A light blocking layer having an opening formed below the semiconductor layer is formed on the non-display region.
Abstract:
Disclosed is an organic light-emitting display device including a transparent substrate which includes a display portion and a pad portion formed in a region around the display portion, a first semiconductor layer formed on the display portion, a second semiconductor layer formed on the pad portion, and a transparent electrode formed on each of the first the second semiconductor layers, where the first and second semiconductor layers include the same material.
Abstract:
A liquid crystal display (“LCD”) panel and fabricating method thereof capable of minimizing erosion of a common pad of the LCD panel are disclosed. The LCD panel includes a common electrode formed on an upper substrate and a common pad formed on a lower substrate facing the upper substrate, the common pad supplying a common voltage to the common electrode through a short point, wherein the common pad includes a lower electrode formed on the lower substrate, a first common contact hole penetrating a gate dielectric layer formed to cover the lower electrode, an intermediate electrode connected to the lower electrode through the first common contact hole, a plurality of second common contact holes penetrating an organic protection layer formed to cover the intermediate electrode, and an upper electrode connected to the intermediate electrode through the second common contact holes.
Abstract:
An organic light-emitting display device comprises: a lower substrate; an upper substrate facing the lower substrate; and a spacer formed in a sealed space between the lower substrate and the upper substrate and dividing the space into two or more sections; wherein air holes are formed in the spacer and allow air to flow between the sections of the space.
Abstract:
A thin film transistor array panel includes a passivation layer formed on a plurality of end portions of a plurality of gate lines. A portion of the passivation layer has a porous structure formed between a connection portion of a flexible printed circuit substrate and a thin film transistor substrate such that when the flexible printed circuit substrate and the thin film transistor array panel are connected to each other, the passivation layer having a porous structure and which is formed at the connection portion therebetween connects the flexible printed circuit substrate with the thin film transistor array panel thereby minimizing an exposed area of the metal of the connection portion to improve a corrosion resistance thereof.
Abstract:
Disclosed is an organic light-emitting display device including a transparent substrate which includes a display portion and a pad portion formed in a region around the display portion, a first semiconductor layer formed on the display portion, a second semiconductor layer formed on the pad portion, and a transparent electrode formed on each of the first the second semiconductor layers, where the first and second semiconductor layers include the same material.
Abstract:
An organic light-emitting display device comprises: a lower substrate; an upper substrate facing the lower substrate; and a spacer formed in a sealed space between the lower substrate and the upper substrate and dividing the space into two or more sections; wherein air holes are formed in the spacer and allow air to flow between the sections of the space.
Abstract:
An organic light-emitting display device includes a buffer layer on a substrate that has a plurality of insulating layers having different refractive indexes, and at least one of the insulating layers have different thicknesses on the same level. The device further includes an active layer of a thin film transistor in a thick area of the buffer layer, a pixel electrode in a thin area of the buffer layer, a gate electrode of the thin film transistor on the active layer and source and drain electrodes of the thin film transistor connected to the active layer, and a gate insulating layer between the gate electrode and the source and drain electrodes. The device also includes an emission layer on the pixel electrode, an opposite electrode facing the pixel electrode, and the emission layer is between the opposite electrode and the pixel electrode.
Abstract:
An OLED display having an improved pad area, and a manufacturing method thereof. The OLED display includes a substrate including a display area and a pad area, an organic light emitting element formed in the display area, a plurality of pads formed in the pad area, and receiving an external signal for light emission of the organic light emitting element and transmitting the signals to the organic light emitting element, and a planarization layer insulating the pads. The planarization layer includes a recess portion formed between the pads.