Abstract:
Methods and apparatus are provided for transmission and reception of common channel information in a mobile communication system using multi-antenna-based beamforming. A number of beams to be used for transmission to a terminal is determined at a base station. The common channel information is generated corresponding to the number of beams. The common channel information is transmitted from the base station to the terminal through one of the beams.
Abstract:
A method and system are provided for a terminal to measure channel quality and transmit channel state information to a base station in a wireless mobile communication system operating in a multi-carrier-based multiple access scheme such as Orthogonal Frequency Division Multiple Access (OFDMA). The feedback information transmission method of a terminal in a mobile communication system includes receiving configuration information corresponding to at least two reference signals from a base station, receiving, at the terminal, feedback configuration information for measuring the at least two reference signals and generating feedback information based on a measurement result, receiving, at the terminal, the at least two reference signals, and transmitting, by the terminal, the feedback information at timings indicated in the feedback configuration information.
Abstract:
Disclosed are a communication method for merging, with an IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and a system therefor. The present disclosure can be applied to an intelligent service (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety-related services, and the like) on the basis of a 5G communication technology and an IoT-related technology. Disclosed are a method and an apparatus for supporting a reservation resource, and according to the present invention, a method for a base station in a communication system comprises a step of transmitting reservation resource-related information to a terminal, determining, on the basis of the reservation-related information, whether a first signal is mapped to the reservation resource and a resource, in which the first signal to be transmitted to the terminal is overlapped, and transmitting the first signal to the terminal on the basis of the determination.
Abstract:
A communication technique of fusing a 5th generation (5G) communication system for supporting higher data transmission rate beyond a 4th generation (4G) system with an Internet of Things (IoT) technology and a system thereof are provided. The communication technique may be applied to intelligent services (e.g., smart home, smart building, smart city, smart car or connected car, health care, digital education, retail business, security and safety related service, or the like) based on the 5G communication technology and the IoT related technology. In order to support sufficient uplink coverage, two structures of an uplink control channel and a multiplexing method with other channels, a method in which long term evolution (LTE) and 5G systems coexist in a single carrier, and a method for reducing an overhead of downlink control information are provided.
Abstract:
The present disclosure relates to a communication technique for fusing, with an IoT technology, a 5G communication system for supporting a higher data transfer rate than a 4G system, and a system therefor. The present disclosure may be applied to intelligent services, such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, security and safety-related services, on the basis of 5G communication technologies and IoT-related technologies. Disclosed is a setting method for an efficient uplink signal transmission of a terminal in a case where a plurality of waveforms are supported to efficiently operate an uplink in a next generation mobile communication.
Abstract:
A communication method and apparatus of a terminal in a mobile communication system are provided. The communication method includes generating uplink control information for at least one activated cell; configuring, if the activated cell belongs to a Master Cell Group (MCG) under a control of a Master evolved Node B (MeNB), an uplink control channel based on the uplink control information of the activated cell belonging to the MCG; and transmitting the uplink control channel to a Primary Cell (PCell).
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present invention is a method by which a base station transmits a signal in a wireless communication system for efficiently performing an initial access procedure of a terminal, the method comprising the steps of: generating the synchronization signal on a basis of subcarrier spacing used in the synchronization signal; and transmitting the synchronization signal to the terminal.
Abstract:
A communication technique and system for converging, with Internet of things (IoT) technology, a 5th generation (5G) communication system for supporting a higher data transmission rate beyond a 4th generation (4G) system is provided. The present disclosure may be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cards, health care, digital education, retail business, security and safety related services, etc.), on the basis of the 5G communication technology and IoT associated technology. According to an embodiment, a method of a terminal in a wireless communication system is provided. The method includes receiving system information, identifying power information for a synchronization signal and a broadcast channel, based on the system information, and transmitting and receiving a signal, based on the power information. In this method, the power information for the synchronization signal and the broadcast channel are set equally.
Abstract:
A discovery signal transmission/reception method and an apparatus for improving energy efficiency of the system are provided. The discovery signal transmission method of a base station in a mobile communication system according to the present disclosure includes acquiring a discovery signal configuration of a neighbor cell, transmitting the discovery signal configuration to a terminal, receiving a measurement report including a result of measurement on a discovery signal of the neighbor from the terminal, the measurement being performed based on the discovery signal configuration, and determining whether to make a handover decision for the terminal based on the measurement report. The discovery signal transmission/reception method of the present disclosure is advantageous in improving energy efficiency of a mobile communication system.
Abstract:
The present invention defines a method for controlling uplink transmission power of a terminal in a communication system which is operated by combining heterogeneous systems. Specifically, the present invention defines a method for selectively applying a power control command in order to control uplink power of a terminal in a communication system which is operated by combining an LTE/LTE-A system with a system which applies a new radio access technology, and a method for differently operating power control units depending on whether beam sweeping is applied or not. Such methods efficiently control transmission power of a terminal, and lower the generation of uplink interference signals, thereby improving system efficiency.