Abstract:
A particular method includes determining, based on an inter-line spectral pair (LSP) spacing corresponding to an audio signal, that the audio signal includes a component corresponding to an artifact-generating condition. The method also includes, in response to determining that the audio signal includes the component, adjusting a gain parameter corresponding to the audio signal. For example, the gain parameter may be adjusted via gain attenuation and/or gain smoothing.
Abstract:
A particular method includes determining, based on an inter-line spectral pair (LSP) spacing corresponding to an audio signal, that the audio signal includes a component corresponding to an artifact-generating condition. The method also includes, in response to determining that the audio signal includes the component, adjusting a gain parameter corresponding to the audio signal. For example, the gain parameter may be adjusted via gain attenuation and/or gain smoothing.
Abstract:
A method of processing an audio signal includes determining an average signal-to-noise ratio for the audio signal over time. The method includes, based on the determined average signal-to-noise ratio, a formant-sharpening factor is determined. The method also includes applying a filter that is based on the determined formant-sharpening factor to a codebook vector that is based on information from the audio signal.
Abstract:
A particular method includes encoding a first frame of an audio signal using a first encoder. The method also includes generating, during encoding of the first frame, a baseband signal that includes content corresponding to a high band portion of the audio signal. The method further includes encoding a second frame of the audio signal using a second encoder, where encoding the second frame includes processing the baseband signal to generate high band parameters associated with the second frame.
Abstract:
A method for determining an interpolation factor set by an electronic device is described. The method includes determining a value based on a current frame property and a previous frame property. The method also includes determining whether the value is outside of a range. The method further includes determining an interpolation factor set based on the value and a prediction mode indicator if the value is outside of the range. The method additionally includes synthesizing a speech signal.
Abstract:
A method includes determining, at a decoder of a first device, an offset value corresponding to an offset between a first particular packet and a second particular packet. The first device includes a de-jitter buffer. The method also includes transmitting the offset value to an encoder of a second device to enable the second device to send packets to the first device based on the offset value.
Abstract:
A method includes generating a first signal corresponding to a first component of a high-band portion of an audio signal. The first component has a first frequency range. The method includes generating a high-band excitation signal corresponding to a second component of the high-band portion of the audio signal. The second component has a second frequency range differs from the first frequency range. The high-band excitation signal is provided to a filter having filter coefficients generated based on the first signal to generate a synthesized version of the high-band portion of the audio signal.
Abstract:
Compressibility-based reallocation of initial bit allocations for frames of an audio signal is described. Applications to redundancy-based retransmission of critical frames (e.g., for fixed-bit-rate modes of speech codec operation) are also described.
Abstract:
A method includes determining, at a speech encoder, frequency domain gain shape parameters. The frequency domain gain shape parameters are based on a second signal associated with an audio signal. The method further includes adjusting a first signal based on the frequency domain gain shape parameters. The first signal is associated with the audio signal. The method also includes inserting the frequency domain gain shape parameters into an encoded version of the audio signal to enable gain adjustment during reproduction of the audio signal from the encoded version of the audio signal.
Abstract:
In speech processing systems, compensation is made for sudden changes in the background noise in the average signal-to-noise ratio (SNR) calculation. SNR outlier filtering may be used, alone or in conjunction with weighting the average SNR. Adaptive weights may be applied on the SNRs per band before computing the average SNR. The weighting function can be a function of noise level, noise type, and/or instantaneous SNR value. Another weighting mechanism applies a null filtering or outlier filtering which sets the weight in a particular band to be zero. This particular band may be characterized as the one that exhibits an SNR that is several times higher than the SNRs in other bands.