Abstract:
Methods, systems, and devices are described for wireless communication at a UE. A user equipment (UE) may perform an initial access procedure to establish a connection with a serving cell. The UE may then arrange a regular transmission schedule with the serving cell including a discontinuous transmission (DTX) cycle and an acknowledgement schedule. The UE may enter a low power mode and refrain from any transmission during the a sleep interval of the DTX cycle. The UE may then wake up and transmit a message to the serving cell after the sleep interval without performing another access procedure. The UE may perform another access procedure to transmit at times not covered by the regular transmission schedule. For example, if an acknowledgement (ACK) for the message isn't received, the UE may perform another access procedure for retransmission.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may establish connectivity to a local area network using cellular radio access technology (RAT). The UE may establish a signaling radio link with a cellular access node (AN) via a cellular RAT. The UE may transmit a connectivity request to a network node via the signaling radio link. The connectivity request may specify a connectivity type for establishing connectivity to a LAN. Based at least in part on an acceptance of the connectivity request, the UE may establish a data radio link with the cellular AN. In an example, the acceptance of the connectivity request may include at least one parameter for configuring the connectivity to the LAN. The UE may then establish a data flow for exchanging data link layer packets with the LAN via the data radio link.
Abstract:
Methods, systems, and devices for wireless communication are described. A wireless device communicating critical or latency sensitive information may determine that a clear channel assessment (CCA) has failed in a shared radio frequency (RF) spectrum band. The device may then transmit a silencing signal in a managed RF spectrum band, and switch to communicating in the managed band from transmitting in the shared band. Other wireless devices communicating with the first device may receive the silencing signal and may also switch to the managed RF spectrum band. Based on the silencing signal, user equipments (UEs) not associated with the critical communications, but also operating in the managed band, may suspend transmissions in the managed band (e.g., uplink (UL) data), although they may still receive transmissions in the managed band (e.g., downlink (DL) data).
Abstract:
A wireless relay device may receive a request indicating that a wireless device has one or more delay-tolerant messages to be forwarded to a network. The wireless relay device may send a response message to the wireless device indicative of an estimated time to network contact. The wireless relay device then receives and caches the delay-tolerant messages to be forwarded. The wireless relay device may forward at least one of the one or more delay-tolerant messages.
Abstract:
Methods, systems, and devices for wireless communication are described. A serving base station may determine a handover loss metric associated with a UE that is a candidate for handover. The handover loss metric may be based on connection parameters associated with the serving base station and a target base station, respectively. The serving base station may identify, based on the handover loss metric, a type of handover procedure to perform. The serving base station may perform the handover procedure of the UE to the target base station according to the identified handover type.
Abstract:
Systems and methods are disclosed for using wireless relays to create path diversity in rebroadcasting data in wireless networks with latency sensitive applications. A first wireless communication device receives a data signal, the data signal being transmitted on a first frequency resource from a second wireless communication device to a third wireless communication device. The first wireless communication device receives an ACK/NACK signal being transmitted from the third wireless communication device to the second wireless communication device. The first wireless communication device determines if the ACK/NACK signal is a NACK signal, and if so transmits the data signal at a second frequency resource during a third time period to the third wireless communication device.
Abstract:
Methods, systems, and devices for wireless communication are described. A wireless device communicating critical or latency sensitive information may determine that a clear channel assessment (CCA) has failed in a shared radio frequency (RF) spectrum band. The device may then transmit a silencing signal in a managed RF spectrum band, and switch to communicating in the managed band from transmitting in the shared band. Other wireless devices communicating with the first device may receive the silencing signal and may also switch to the managed RF spectrum band. Based on the silencing signal, user equipments (UEs) not associated with the critical communications, but also operating in the managed band, may suspend transmissions in the managed band (e.g., uplink (UL) data), although they may still receive transmissions in the managed band (e.g., downlink (DL) data).
Abstract:
A communications system includes a plurality of different types of small coverage area base stations, e.g., femto cell base stations, WiFi access points and Bluetooth access points within a macro cell. Different user equipment (UE) devices, e.g., different smartphones, include different capabilities. In order for UE devices and small coverage area base stations with compatible capabilities to efficiently discover one another, the various small coverage area base stations and various UE devices utilize the macro cell communications band and macro cell communication protocol to coordinate device discovery and exchange discovery information and control information which allows a UE device to access a compatible small coverage area base station and subsequently communicate user data, e.g., traffic data, with the UE device.
Abstract:
Opportunistic wide area network (WAN) connectivity for sensor devices with low transmit power, triggered by sensor device broadcasts, is disclosed which increases the likelihood of the sensor devices' data messages reaching the base station. Multiple sensor devices within proximity to each other establish device to device links. When a sensor device successfully connects to the base station, the base station informs the sensor device selected as a gateway, which in turn broadcasts its identification to peer sensor devices by way of a multi-hop rebroadcasting scheme. This triggers a multi-hop forwarding scheme where sensor devices that receive the broadcast forward their data messages via the D2D links to other peers until their data messages reach the gateway sensor device. The gateway sensor device forwards data messages it receives to the base station, so that the base station receives data packets from multiple sensor devices via the gateway sensor device.
Abstract:
Methods, systems, and devices are described that provide for D2D synchronization. The methods, systems, and/or devices may include tools and techniques that provide for synchronizing a mobile device based on detection of a reliability alarm. A reliability alarm may be used between mobile devices, which is transmitted and/or received on specific D2D resources. Since the resources are reserved for the reliability alarm, a mobile device which was previously isolated from network synchronization will be able to receive the reliability alarm that a reliable synchronization signal is close when it moves within range of a reliable device. Once a reliability alarm is received the mobile device may free other resources to allow it to receive synchronization signals from the reliable devices. The mobile device may then synchronize with the network based on the received synchronization signals and transmit its own reliability alarm for subsequent isolated devices to use.