Abstract:
Systems and methods in accordance with particular embodiments provide for alignment of an electric vehicle induction coil with a base system induction coil through a determination of the phase of a base system induction coil current signal. In certain embodiments, an electric vehicle induction coil that receives a transmission signal can be determined to be in greater alignment with a base system induction coil that transmits the transmission signal as the phases of the current signals at the base system induction coil and the electric vehicle induction coil converge. One embodiment includes a method of receiving wireless power, including detecting a transmission signal in a wireless power transmission, the transmission signal comprising periodic variations between a first frequency and a second frequency. The method further includes determining a phase of a base system induction coil signal based on the detected transmission signal.
Abstract:
Systems, methods and apparatus for a wireless power transfer are disclosed. In one aspect a wireless power transfer apparatus is provided. The apparatus includes a casing. The apparatus further includes an electrical component housed within the casing. The apparatus further includes a sheath housed within the casing. The apparatus further includes a conductive filament housed within the sheath. The electrical component is electrically connected with the conductive filament. The casing is filled with a settable fluid bound with the sheath to form a structural matrix.
Abstract:
Dynamic wireless charging systems may involve coordinating multiple charging base pads to provide coordinated, continuous power transfers to a moving receiver along the distance in which the dynamic wireless charging system is installed. These dynamic systems may require a large number of coils (base pads) which may be components in base array networks (BAN modules). The BAN modules may provide for simplified installation and system design wherein the BAN modules may be preassembled and self-contained, drop-in-place units. The layout and design of the BAN modules may be such that they may contain charging base pads, local controllers, distribution circuitry, and switching controls. The sizing of the BAN modules may dramatically affect the usability and practicality of such dynamic systems. The sizing of the BAN modules may be dependent upon the pitch between vehicle pads on electric vehicles and base pad pitch within the BAN modules.
Abstract:
Dynamic wireless charging systems may involve coordinating multiple charging base pads to provide coordinated, continuous power transfers to a moving receiver along the distance in which the dynamic wireless charging system is installed. The layout and design of the charging base pads, the current flow through the charging base pads, and the sequencing of charging base pad activation and current flow implemented may dramatically affect the power transfers and practicality of such dynamic systems. The sequencing and control of these coils may need to be capable of managing the individual coils with minimal infrastructure as well as be capable of distributing the required power from the power grid to these pads efficiently and safely, and may comprise charging base pads, controllers to control the power flow to, activation of, and current flow direction within the base pads.
Abstract:
One aspect provides a wireless power transmitter. The wireless power transmitter includes a transmit antenna configured to generate a field for wireless transmit power in both a first and second configuration. The wireless power transmitter further includes a first capacitor. The wireless power transmitter further includes at least one switch configured to selectively connect the first capacitor in one of the first and second configuration, the first capacitor being in parallel with the transmit antenna in the first configuration and in series with the transmit antenna in the second configuration. The wireless power transmitter further includes a second capacitor in parallel with the transmit antenna and a transformer configured to operate at a first turns-ratio in the first configuration and a second turns-ratio in the second configuration, the first turns-ratio being lower than the second turns-ratio.
Abstract:
This disclosure provides systems, methods and apparatus for connecting and operating an AC source to a load. In one aspect a power supply topology is provided which may be of particular use in the area of wireless power transfer. The topology allows for a single source to energize one or more conductive structures configured to generate a field, improving power transfer to a power receiver.
Abstract:
An apparatus for wirelessly transferring power is provided. The apparatus comprises a first coupler, a second coupler, and a third coupler overlapping at least the first coupler. The apparatus further comprises a ferrimagnetic structure comprising a first portion disposed under the first coupler, a second portion disposed under the second coupler, and a gap defined between the first coupler and the second coupler, the gap physically separating the first portion from the second portion. One or both of the first portion and the second portion comprises a first plurality of ferrimagnetic strips interleaved with a second plurality of ferrimagnetic strips configured to attenuate a magnetic flux passing between the first and second couplers. The first plurality of ferrimagnetic strips are interleaved with the second plurality of ferrimagnetic strips under at least a portion of the first coupler that is overlapped by the third coupler.
Abstract:
A power receiver is configured to supply current to a load and to be wirelessly operatively coupled to a power transmitter and includes a plurality of inductive elements. The power receiver further includes a circuit operatively coupled to the plurality of inductive elements and configured to be selectively switched among a plurality of coupling states. The circuit is further configured to be selectively switched such that each inductive element has a reactance state of a plurality of reactance states. The power receiver further includes a controller configured to select the coupling state and to select the reactance state of each inductive element based on one or more signals indicative of one or more operating parameters of at least one of the power receiver and the power transmitter.
Abstract:
Systems, methods, and apparatus are disclosed for a device for controlling the amount of charge provided to a charge-receiving element in a series-tuned resonant system having a series-tuned resonant charge-receiving element configured to generate a secondary voltage and a secondary current, the series-tuned resonant charge-receiving element comprising a switchable circuit responsive to a first control signal, the switchable circuit configured to alternate between providing the secondary voltage and the secondary current to a charge-receiving element and preventing the secondary voltage and the secondary current from being provided to the charge-receiving element.
Abstract:
Systems and methods for dynamically tuning reactive power in an inductive power transfer system are disclosed. The system comprises a first plurality of coils operably coupled to a respective ferromagnetic material, configured to receive wireless power via the ferromagnetic material from a power source. The system further comprises a plurality of switches configured to selectively control power received by certain of the first plurality of coils. The system further comprises a second plurality of coils configured to receive current from respective ones of the first plurality of coils and deliver wireless power to a wireless power receiver. The system further comprises at least one control unit configured to selectively activate the switches. The switches may be set to provide power from the power source to a portion of the plurality of the second coils or selectively increase or decrease the reactive power load of the power source.