Abstract:
Methods and apparatus for communication comprise aspects that include performing a power management procedure for configuring a subset of network entities to receive one or more of downlink signal measurements and/or one or more uplink signal measurements. The methods and apparatus further comprise aspects that include storing the one or more one or more of downlink signal measurements and/or one or more uplink signal measurements associated with the subset of network entities at a database for managing transmit power at the subset of network entities. Moreover, the methods and apparatus comprise aspects that include adjusting a transmit power value of at least one of the subset of network entities from a first transmit power value to a second transmit power value based at least in part on the one or more of downlink signal measurements and/or one or more uplink signal measurements.
Abstract:
Described herein are techniques for mode selection and power management for multimode small cells. For example, the technique may involve taking measurements, at the access point, of a macro cell in a vicinity of the access point. The technique may involve managing power or resources of a first RAT and a second RAT based on the measurements, wherein the power of at least one of the first RAT or second RAT is associated with coverage area of the macro cell.
Abstract:
Transmit power (e.g., maximum transmit power) may be defined based on the maximum received signal strength allowed by a receiver and a total received signal strength from transmitting nodes at the receiver. Transmit power may be defined for an access node (e.g., a femto node) such that a corresponding outage created in a cell (e.g., a macro cell) is limited while still providing an acceptable level of coverage for access terminals associated with the access node. An access node may autonomously adjust its transmit power based on channel measurement and a defined coverage hole to mitigate interference and perform a self-calibration process.
Abstract:
Methods, apparatuses, and computer program products are disclosed for facilitating a beacon-assisted handover from a macro network to a femto cell during an active call. A femto cell management system assigns a unique identifier to a femto cell, which the femto cell utilizes to broadcast a beacon at a frequency different than the operating frequency of the femto cell. A wireless terminal receives a control message from the macro network directing the wireless terminal to scan particular frequencies. The wireless terminal subsequently provides a report to the macro network identifying attributes ascertained from the scan, which includes attributes associated with the beacon. The macro network then performs a handover from the macro network to the femto cell as a function of the attributes.
Abstract:
Access terminals are provisioned to conduct intra-frequency, inter-frequency, and inter-RAT measurements and report physical layer identifiers of detected cells. The provisioning may involve cycling through all or a portion of a defined superset of physical layer identifier one subset at a time. In addition, the physical layer identifiers may be prioritized to improve the search procedure. Measurement report messages (including physical layer identifiers of the detected cells) are received at an access point as a result of the provisioning. A neighbor cell list for the femtocell is maintained based on the received measurement report messages and, optionally, other information. This other information may related to, for example, one or more of: physical layer identifier information received from access terminals that register with the access point, physical layer identifier information received via network listen operations, information regarding co-located cells, or physical layer identifier information received from a network entity.
Abstract:
Aspects of the methods and apparatus relate to exploiting the spectrum of a high power base station cell to provide higher capacity in a wireless communication system. Generally, a small cell with multi-carrier support may detect an absence of high power base station cell coverage or absence of high power base station cell users and may harness the high power base station cell carrier spectrum to provide higher data download rates and/or serve more mobility users. Specifically, aspects of the methods and apparatus include transmitting a first signal on a first carrier from a first access point and determining a current ability of a second access point on a second carrier. Thereafter, aspects of the methods and apparatus include transmitting a second sit-mat on the second carrier from the first access point according to the determined current ability of the second access point.
Abstract:
Described herein are techniques for mode selection and power management for multimode small cells. For example, the technique may involve taking measurements, at the access point, of a macro cell in a vicinity of the access point. The technique may involve managing power or resources of a first RAT and a second RAT based on the measurements, wherein the power of at least one of the first RAT or second RAT is associated with coverage area of the macro cell.
Abstract:
Described herein are techniques for radio technology selection and power calibration in multi-RAT small cells. For example, the technique may involve determining, at an access point, path loss information for a circuit switched fallback failure location. The technique may involve building a path loss database over a time period from the path loss information and managing power or operation mode of a first RAT and a second RAT of the access point based on the path loss database.
Abstract:
The present disclosure presents a method and an apparatus for passive estimation mechanism for backhaul management at a small cell base station. For example, the method may include determining, at the small cell base station, whether a time slot utilization of a flow at a user equipment (UE) in communication with the small cell base station is above a first threshold, wherein a plurality of time slots are associated with the flow, determining whether an average throughput of the flow is below a second threshold in response to determining that the time slot utilization is above the first threshold, and identifying that the flow is not satisfied in response to determining that the average throughput of the flow is below the second threshold. As such, passive estimation mechanism for backhaul management at a small cell base station may be achieved.
Abstract:
Methods and apparatus for communication comprise selecting a first parameter value for a first RAT transmission-related parameter from a first set of selectable first parameter values and a second parameter value for a second RAT transmission-related parameter from a second set of selectable second parameter values based at least in part on a mapping function that maps between ones of the first set of selectable first parameter values for the first RAT transmission-related parameter and the second set of selectable second parameter values for the second RAT transmission-related parameter. Moreover, the methods and apparatus comprise communicating using at least one of the first parameter value of the first RAT transmission-related parameter for the first RAT and the second parameter value of the second RAT transmission-related parameter for the second RAT.