Abstract:
Methods are provided that enable mitigation of desense from a transmission on a first radio frequency (RF) resource associated with a first SIM to a receiver circuit of a second RF resource associated with a second SIM in the same device. A multi-SIM wireless device, such as a dual-SIM dual active (DSDA) device, may utilize characteristics of uplink and downlink signals to determine an optimal action that reduces interference from conflicting signals. Mitigating actions do not require involvement on the network side, and may greatly improve processing time for implementing interference prevention measures.
Abstract:
A method for wireless communications is described. The method includes beginning a voice call using a voice services over adaptive multi-user channels on one slot receiver. Pilot signal knowledge is obtained. Interferers knowledge is also obtained. Error metrics are computed using the pilot signal knowledge and the interferers knowledge. The method further includes selecting between the voice services over adaptive multi-user channels on one slot receiver and a legacy receiver for the voice call based on the error metrics. Other aspects, embodiments and features are also claimed and described.
Abstract:
Apparatus and methods are disclosed to improve a user equipment's capability of performing time and frequency tracking by utilizing two carriers when the channel interference on one of the carriers is greater than a certain threshold. In one aspect of the disclosure, a user equipment (UE) determines that channel interference of a first carrier is greater than an interference threshold. The UE performs frequency tracking and time tracking in accordance with information received from a second carrier, and performs interference cancellation in accordance with the frequency tracking and time tracking. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Access terminals are adapted to regulate power in wireless receiver circuits. In one example, access terminals include a communications interface with at least one wireless receiver circuit. A processing circuit coupled with the communications interface can receive a transmission during a Frequency Correction Channel (FCCH) frame. Following the received transmission, at least a portion of the receiver circuit may be powered down. A determination may also be made whether the received transmission was reliable. The receiver circuit can subsequently be powered up, and another transmission can be received on a subsequent channel. When the received transmission was sufficiently reliable, the other transmission may be a transmission during a Synchronization Channel (SCH) frame. When the received transmission is not sufficiently reliable, the other transmission may be another transmission received during a subsequent Frequency Correction Channel (FCCH) frame. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Access terminals are adapted to blacklist one or more neighboring cells from acquisition attempts. For instance, an access terminal may receive a transmission including a list of neighboring cells to be monitored while connected to a particular serving cell. The access terminal may determine that a predefined number of consecutive acquisition attempts with a particular neighboring cell have failed. In response to failure of the predefined number of consecutive acquisition attempts, the access terminal can blacklist the neighboring cell from subsequent acquisition attempts for a predefined blacklisting period. Following the duration of the blacklisting period, the access terminal may conduct a subsequent acquisition attempt with the neighboring cell. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Apparatus and methods are disclosed to provide for a multi-SIM wireless user equipment configured for block-level, or slot-level tune-away operations enabling simultaneous communication with a plurality of channels. The first and second channels may correspond to different RANs, each of which the user equipment may subscribe to as corresponding to information in a plurality of SIMs at the user equipment. In other examples, the first and second channels may correspond to different cells within a single RAN. In either case, the tune-away operations disclosed provide for reduced data loss at the first channel and in some examples improved communication performance at the second channel. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Access terminals are adapted to regulate power in wireless receiver circuits. In one example, access terminals include a communications interface with at least one wireless receiver circuit. A processing circuit coupled with the communications interface can receive a transmission during a Frequency Correction Channel (FCCH) frame. Following the received transmission, at least a portion of the receiver circuit may be powered down. A determination may also be made whether the received transmission was reliable. The receiver circuit can subsequently be powered up, and another transmission can be received on a subsequent channel. When the received transmission was sufficiently reliable, the other transmission may be a transmission during a Synchronization Channel (SCH) frame. When the received transmission is not sufficiently reliable, the other transmission may be another transmission received during a subsequent Frequency Correction Channel (FCCH) frame. Other aspects, embodiments, and features are also claimed and described.