Abstract:
Techniques are described for wireless communication. One or more wireless local area network (WLAN) preamble portions may span multiple 20 MHz frequency bands, and may be duplicated across a transmission bandwidth. WLAN preamble portions may include common portions for multiple receivers as well as dedicated portions for particular receivers, and common portions may be transmitted in a primary frequency band in some examples. Some techniques provide that WLAN preamble portions may be encoded using different sized code blocks. Various aspects of the disclosure also provide for signaling of resource allocations of WLAN wireless frames.
Abstract:
An example method may include decoding, at a UE, a downlink data transmission and determining, over each of multiple streams including a single stream and two dual streams, whether to transmit an acknowledge (ACK) or a negative acknowledge (NACK) message to a base station based on a result of the decoding. Further, the example method may include calculating a signal noise ratio (SNR) value for adjusting each of the multiple streams based on the determining. Further still, the example method may include mapping the calculated SNR value of the single stream to a first channel quality indicator (CQI) value. Moreover, the example method may include mapping the calculated SNR value of the two dual streams to a second CQI value. In addition, the example method may include transmitting the first CQI value and the second CQI value to the base station.
Abstract:
A wireless device may selectively add padding to an end of a data transmission in order to provide adequate time for a receiving device to process the transmitted data and transmit feedback related to the transmitted data. A wireless device may identify a total amount of data capable of being transmitted in a transmission, and determine a number of data bits to be transmitted in the transmission. An amount of padding may be selected based on a proportion of the total amount of data capable of being transmitted and the number of data bits. In some examples, a preamble for a feedback transmission may be transmitted concurrently with processing of the received transmission.
Abstract:
Methods and systems for wireless communication are disclosed. In one aspect, a method includes generating device specific transmission control information for each of two devices, transmitting the transmission control information for each device over different frequencies, and transmitting data to each of the devices as part of a communication according to the respective transmission control information. In some aspects, the transmission control information for each device is encoded based on an identifier of the device. For example, in some aspects, an error detection value such as a cyclic redundancy check, is exclusive or'ed with an identifier of the device, such as an AID, PAID, or group identifier. The resulting value is transmitted along with the transmission control information. A device receiving the wireless frame may only be able to decode its own transmission control information, as the decoding is also based on the receiving device's identifier.
Abstract:
Aspects of this disclosure relate to methods and apparatuses for aligning downlink discontinuous reception patterns in multiflow High-Speed Downlink Packet Access (HSDPA). One aspect of the disclosure provides a method for wireless communications. The method includes: communicatively connecting with a user equipment (UE), a first cell, and a second cell; determining a sub-frame pairing between the first cell and the second cell; and selectively updating the sub-frame pairing based on a timing offset representative of a sub-frame delay between the first cell and the second cell.
Abstract:
Methods and apparatuses are provided for uplink MIMO transmissions in a wireless communication system. In some particular aspects, an E-TFC selection process for selecting a transport format combination for an uplink MIMO transmission may take certain steps in the case that a UE is power- or buffer-limited. For example, in a rank 2 transmission, non-scheduled data is allocated only to the primary stream. If the allocated non-scheduled data is less than the determined primary stream transport block size, scheduled data is allocated to the primary stream in an amount not to exceed the determined primary stream TBS. Finally, scheduled data is allocated to the secondary stream in an amount not to exceed the determined secondary stream TBS.
Abstract:
Aspects of this disclosure relate to methods and apparatuses for aligning downlink discontinuous reception patterns in multiflow High-Speed Downlink Packet Access (HSDPA). One aspect of the disclosure provides a method for wireless communications. The method includes: communicatively connecting with a user equipment (UE), a first cell, and a second cell; determining a sub-frame pairing between the first cell and the second cell; and selectively updating the sub-frame pairing based on a timing offset representative of a sub-frame delay between the first cell and the second cell.
Abstract:
Methods and apparatuses are provided for uplink MIMO transmissions in a wireless communication system. In some particular aspects, scheduling of the uplink MIMO transmissions may make a determination between single stream, rank=1 transmissions and dual stream, rank=2 transmissions based on various factors. Further, when switching between single and dual stream transmissions in the presence of HARQ retransmissions of failed packets, the scheduling function may determine to transmit the HARQ retransmissions on a single stream transmission or to transmit the HARQ retransmissions on one stream while transmitting new packets on the other stream.
Abstract:
One or more scheduling grants may be received from a Node B related to a plurality of uplink MIMO streams. A determination may be made as to a primary transport power and a primary transport block size for a primary stream. A secondary transmit power and a secondary transport block size for a secondary stream may also be determined.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine whether sufficient resources are available to perform a transmission in a current slot. The UE may transmit the transmission in the current slot, transmit an early reservation signal for a future resource, or determine whether sufficient resources are available to perform the transmission in a subsequent slot based at least in part on a probability-based determination and based at least in part on whether sufficient resources are available to perform the transmission in the current slot. Numerous other aspects are provided.