Abstract:
Systems and methods for cooling an electronic image assembly are provided. A transparent panel forms a front portion of a housing for the electronic image assembly. The transparent panel is located forward of, and at least some distance from the electronic image assembly. An airflow pathway passes through the housing between said electronic image assembly and said transparent panel. An air circulation device forces air through the airflow pathway. At least one polarizer located at the transparent panel is configured to reduce solar energy entering said airflow pathway.
Abstract:
Exemplary embodiments disclosed herein provide a back pan cooling assembly for an electronic display having a rear pan. A cooling back pan is preferably positioned behind the rear pan, the space between the cooling back pan and the rear pan defining a gap. A fan is positioned to cause a flow of ambient air through the gap. An electronic component for driving the electronic display may be placed in conductive thermal communication with the cooling back pan. A rear cover can be placed against the cooling back pan to define a sealed compartment which does not permit ambient air to enter. A port can be provided within the rear cover which allows ambient air to travel between the surroundings, the fan, and the gap.
Abstract:
An apparatus for cooling an electronic image assembly with ambient gas and circulating gas is disclosed. A first fan may be positioned to force the circulating gas around the electronic image assembly in a closed loop while a second fan may be positioned to cause a flow of ambient gas. A structure is preferably positioned to allow the circulating gas to cross the flow of the ambient gas while substantially prohibiting the circulating gas from mixing with the ambient gas. A pair of manifolds may be placed along the sides of the electronic image assembly and may be in gaseous communication with a plurality of channels placed behind the electronic image assembly. A heat exchanger may be used in some exemplary embodiments.
Abstract:
An apparatus for cooling an electronic image assembly with ambient gas and circulating gas is disclosed. A first fan may be positioned to force the circulating gas around the electronic image assembly in a closed loop while a second fan may be positioned to cause a flow of ambient gas. A structure is preferably positioned to allow the circulating gas to cross the flow of the ambient gas while substantially prohibiting the circulating gas from mixing with the ambient gas. A pair of manifolds may be placed along the sides of the electronic image assembly and may be in gaseous communication with a plurality of channels placed behind the electronic image assembly. A heat exchanger may be used in some exemplary embodiments.
Abstract:
A heat exchanger assembly for an electronic image assembly placed within a housing where ambient air surrounds the exterior of the housing and a rear plate may be placed behind a backlight to create a channel. An ambient air fan may be placed between two portions of a heat exchanger to force ambient air through the heat exchanger. The fan may also be positioned to also force ambient air through the channel. A circulating gas fan may also be placed within the housing to force circulating gas through at least one portion of the heat exchanger.
Abstract:
A system for cooling an electronic image assembly using a heat exchanger with an internal fan assembly. Circulating gas may also be used to cool a front portion of the electronic image assembly or any other internal cavity of the electronic display housing. The circulating gas may be drawn through a heat exchanger so that heat may be transferred to an ambient gas. The heat exchanger may have an internal fan assembly for drawing ambient air through the heat exchanger and exhausting it out of the display housing. The heat exchanger may be divided into two portions so that the fan assembly is placed between the two portions.
Abstract:
An apparatus for cooling an electronic image assembly with ambient gas and circulating gas is disclosed. A first fan may be positioned to force the circulating gas around the electronic image assembly in a closed loop while a second fan may be positioned to cause a flow of ambient gas. A structure is preferably positioned to allow the circulating gas to cross the flow of the ambient gas while substantially prohibiting the circulating gas from mixing with the ambient gas. A pair of manifolds may be placed along the sides of the electronic image assembly and may be in gaseous communication with a plurality of channels placed behind the electronic image assembly. A heat exchanger may be used in some exemplary embodiments.
Abstract:
A heat exchanger assembly for an electronic image assembly placed within a housing where ambient air surrounds the exterior of the housing and a rear plate may be placed behind a backlight to create a channel. An ambient air fan may be placed between two portions of a heat exchanger to force ambient air through the heat exchanger. The fan may also be positioned to also force ambient air through the channel. A circulating gas fan may also be placed within the housing to force circulating gas through at least one portion of the heat exchanger.
Abstract:
The exemplary embodiments disclosed herein provide a heat exchanger assembly for cooling power module bricks, having a plurality of heat exchanger layers where a top layer is in conductive thermal communication with the power module brick. A series of metallic plates are preferably positioned within each heat exchanger layer and are preferably aligned with the power module brick. A circulating fan may be positioned to force circulating gas across the power module brick and through the heat exchanger. An external air fan may be positioned to force external air through the heat exchanger. Pass through junctions may be positioned near edges of the heat exchanger to permit the circulating gas to cross paths with the external air without allowing the two gas flows to mix with one another.
Abstract:
The exemplary embodiments herein provide a system for cooling an electronic display where a plate is positioned behind the electronic display, the space between the plate and the electronic display defining a first channel. A first fan is preferably positioned to force a first flow of external air through the first channel. A heat exchanger is preferably positioned adjacent to the plate where the space between the heat exchanger and the plate defines a second channel; and a second fan is preferably positioned to force a second flow of external air through the second channel and through the heat exchanger. A continuous heat sink may be placed within the first channel. Pass through gaskets may be used to ensure the external air may cross paths with the circulating gas without permitted the external air and circulating gas to mix.