Abstract:
The invention relates to the determination of the relative concentrations of proteins or protein derivatives in liquids. The invention provides a method which uses nanoparticles coated with specific affinity collectors in order to fish the desired proteins or protein derivatives out of the liquids and to separate them, in order to introduce them to the mass spectrometric frequency analysis after elution from the affinity collectors. This makes it possible to determine the concentrations of several proteins or several forms of protein modification or mutation relative to each other with relatively high measuring dynamics.
Abstract:
The invention relates to methods and devices for the effective capturing of externally generated ions in an RF operated quadrupole ion trap. The invention involves applying a voltage consisting of positive and negative pulses, instead of a sinusoidal RF voltage, during the capturing process, with capturing intervals between each pulse in which the voltage is low.
Abstract:
Methods and equipment are provided for the mass spectrometric measurement of a large number of genotyping profiles, each formed by several tens to several hundreds of SNPs (single nucleotide polymorphisms). A multitude of chips each carrying an array of surface-bound oligonucleotide probes for mutations are synchronously processed. The chips are attached to plates such that they can be immersed in a multitude of wells with DNA samples requiring analysis while also serving directly as sample carriers in mass spectrometers. The multitude of wells can, for instance, take the form of microtitre plates. Primers may be used which possess a photolytically or chemically cleavable linker that bridges one base pair and does not hinder either the possibility of hybridization or enzymatic extension. Light or chemicals can then be used to cleave short chains particularly suitable for ionization by matrix assisted laser desorption and mass spectrometric analysis using time-of-flight mass spectrometers.
Abstract:
The invention relates to a time-of-flight mass spectrometer for injection of the ions orthogonally to the time-resolving axis-of-flight component, with a pulser for acceleration of the ions of the beam in the axis-of-flight direction, preferably with a velocity-focusing reflector for reflecting the ion beam and with a flat detector at the end of the flight section. The invention consists of using, both for acceleration in the pulser and for reflection in the reflectors, a gridless optical system made up of slit diaphragms which can spatially focus the ions onto the detector in the direction vertical to the directions of injection and flight axis, but which does not have any focusing or deflecting effect on the other directions. For some reflector geometries it is essential to use an additional cylindrical lens for focusing, and for other reflector geometries the use of such a lens may be advantageous.
Abstract:
The invention relates to the scanning and representation of daughter ion spectra for the purpose of determining the structural characteristics of parent ions in ion traps. The invention consists of combining all or selected daughter and granddaughter spectra of a parent ion over several generations in one combined descendants spectrum. This combined descendants spectrum can be depicted as a graphic or a list. The references to origin can be plotted on the combined descendants spectrum. For biopolymers, where the loss of fragments can be identified due to their mass, the names or abbreviations of lost molecule fragments can be entered. The criteria for selection of the spectra can be predefined; in this way, the spectra can be depicted and even scanned automatically.
Abstract:
The invention relates to a method and a device for controlling the number of ions in ion cyclotron resonance (ICR) mass spectrometers, whereby the ions enter a multipole ion guide after their formation and are stored there temporarily. By measuring the ion number in a predefined subset of these temporarily stored ions, the number of ions transferred into the ICR trap for mass spectrometric analysis is regulated. A mode of operation of the multipole ion guide can ensure that undesirable mass ranges are filtered out before the transfer of ions into the ICR mass spectrometer. The invention makes it possible to eliminate space charge effects, which are caused by overfilling the ICR traps.
Abstract:
The invention concerns methods and instruments for fast, selective replication of deoxyribonucleic acid (DNA) from biomaterial through the known polymerase chain reaction (PCR), working in individual duplication thermocycles. The invention consists of extremely brief cycle times of only a few seconds for the PCR reactions, generated, on the one hand, by reaction chambers for the reception of the reaction solution constructed of a pattern of fine capillaries in close proximity to heating and cooling elements in order to optimally accelerate the temperature setting in the reaction solution for the three temperature phases of the PCR duplication cycles and, on the other hand, by keeping the flow rates in the capillaries to a minimum during the amplification phase so that the polymerase reaction is not disturbed. The capillary pattern can be simply produced by means of microsystern technology.
Abstract:
The time-of-flight mass spectrometers which must demonstrate a high constancy of the calibrated mass scale even under changeable ambient temperatures and thermal loads due to pumps or electronics. Time-of-flight mass spectrometers calculate the masses of ions from the measured time of flight in a long flight tube that is normally manufactured of stainless steel. These flight tubes are subject to temperature-related length changes which affect the flight time and therefore the mass determination. The thermal expansion of spectrometer parts between ion source and ion detector, thus keeping the flight path for the ions at a constant length. Length compensation can be produced by design of the spacing system made of materials of different thermal expansion coefficients, the length changes of which balance out in opposite directions.
Abstract:
The invention relates to measurement methods for time-of-flight mass spectrometers which operate with an ionization of analyte substances adsorbed at the surface of a sample support and an improvement in mass resolution through delayed ion acceleration (or "delayed extraction") in front of the sample support. It particularly relates to velocity focusing for good mass resolution simultaneously for wide ranges of masses within the spectrum.The invention consists of focusing the flight-times of the ions simultaneously for all masses in wide ranges of interest relative to their initial velocity, by allowing the acceleration in the first accelerating region to increase in time after being switched on. Thus a good resolution cannot only be set for one mass on the spectrum but for all masses in wide ranges simultaneously. In computer simulations, provided there is a correlation of space and velocity distribution, focusing of a least first order is obtained simultaneously for all ions.
Abstract:
The invention consists of deriving the control of the space charge in the ion trap for the initial daughter ion spectrum from the filling rates of previous normal spectra, from the abundance ratio of the parent ions to be isolated to the total ions in the spectrum, and from the at least roughly known isolation and fragmentation yields. For further daughter ion spectra, the resulting measured overall filling rate with daughter ions may be used. The same applies in an analogue way to spectra of isolated ions or of ions from MS.sup.n processes.