Abstract:
In some embodiments, a system includes a set of servers, a set of switches within a switch fabric, and an optical device. The optical device is operatively coupled to the set of servers via a first set of optical fibers. Each server from the set of servers is associated with at least one wavelength from a set of wavelengths upon connection to the optical device. The optical device is operatively coupled to each switch from a set of switches via an optical fiber from a second set of optical fibers. The optical device, when operative, wavelength demultiplexes optical signals received from each switch from the set of switches, and sends, for each wavelength from the set of wavelengths, optical signals for that wavelength to the server from the set of servers.
Abstract:
In one embodiment, a method includes sending a configuration signal to a virtual network switch module within a control plane of a communications network. The configuration signal is configured to define a first network rule at the virtual network switch module. The method also includes configuring a packet forwarding module such that the packet forwarding module implements a second network rule, and receiving status information from the virtual network switch module and status information from the packet forwarding module. The status information is received via the control plane.
Abstract:
In one embodiment, a method includes sending a first flow control signal to a first stage of transmit queues when a receive queue is in a congestion state. The method also includes sending a second flow control signal to a second stage of transmit queues different from the first stage of transmit queues when the receive queue is in the congestion state.
Abstract:
In some embodiments, an apparatus comprises a core network node and a control module within an enterprise network architecture. The core network node is configured to be operatively coupled to a set of wired network nodes and a set of wireless network nodes. The core network node is configured to receive a first tunneled packet associated with a first session from a wired network node from the set of wired network nodes. The core network node is configured to also receive a second tunneled packet associated with a second session from a wireless network node from the set of wireless network nodes through intervening wired network nodes from the set of wired network nodes. The control module is operatively coupled to the core network node. The control module is configured to manage the first session and the second session.
Abstract:
In some embodiments, an apparatus comprises a processing module, disposed within a first switch fabric element, configured to detect a second switch fabric element having a routing module when the second switch fabric element is operatively coupled to the first switch fabric element. The processing module is configured to define a virtual processing module configured to be operatively coupled to the second switch fabric element. The virtual processing module is configured to receive a request from the second switch fabric element for forwarding information and the virtual processing module is configured to send the forwarding information to the routing module.
Abstract:
In some embodiments, a system includes a set of servers, a set of switches within a switch fabric, and an optical device. The optical device is operatively coupled to the set of servers via a first set of optical fibers. Each server from the set of servers is associated with at least one wavelength from a set of wavelengths upon connection to the optical device. The optical device is operatively coupled to each switch from a set of switches via an optical fiber from a second set of optical fibers. The optical device, when operative, wavelength demultiplexes optical signals received from each switch from the set of switches, and sends, for each wavelength from the set of wavelengths, optical signals for that wavelength to the server from the set of servers.
Abstract:
A mesh network of wired and/or wireless nodes is described in which a centralized controller provides seamless end-to-end service from the edge of the mesh network to mesh nodes located proximate to subscriber devices. The controller operates to provide a central configuration point for configuring forwarding planes of the mesh nodes of the mesh network, so as to set up transport data channels to transport traffic from the edge nodes via the mesh nodes to the subscriber devices.
Abstract:
Dynamic control channel establishment for an access network is described in which a centralized controller provides seamless end-to-end service from a core-facing edge of a network to access nodes. For example, a method includes receiving, by the centralized controller, a discover message originating from a network node, which includes an intermediate node list that specifies a plurality of network nodes the discover message traversed from the network node to an edge node, determining, based on the plurality of nodes specified by the discover message, a path from the edge node to the network node, allocating each of a plurality of Multi-protocol Label Switching (MPLS) labels to a respective outgoing interface of each of the plurality of network nodes, and outputting one or more control messages for configuring the network node, wherein the control messages are encapsulated within a label stack comprising the allocated plurality of labels.
Abstract:
A high-performance, scalable and drop-free data center switch fabric and infrastructure is described. The data center switch fabric may leverage low cost, off-the-shelf packet-based switching components (e.g., IP over Ethernet (IPoE)) and overlay forwarding technologies rather than proprietary switch fabric. In one example, host network accelerators (HNAs) are positioned between servers (e.g., virtual machines or dedicated servers) of the data center and an IPoE core network that provides point-to-point connectivity between the servers. The HNAs are hardware devices that embed virtual routers on one or more integrated circuits, where the virtual router are configured to extend the one or more virtual networks to the virtual machines and to seamlessly transport packets over the switch fabric using an overlay network. In other words, the HNAs provide hardware-based, seamless access interfaces to overlay technologies used for communicating packet flows through the core switching network of the data center.
Abstract translation:描述了高性能,可扩展和无丢包的数据中心交换结构和基础架构。 数据中心交换结构可以利用低成本,现成的基于分组的交换组件(例如,IP over Ethernet(IPoE))和覆盖转发技术而不是专有交换结构。 在一个示例中,主机网络加速器(HNA)位于数据中心的服务器(例如,虚拟机或专用服务器)之间,以及提供服务器之间的点对点连接的IPoE核心网络。 HNA是将虚拟路由器嵌入到一个或多个集成电路上的硬件设备,其中虚拟路由器被配置为将一个或多个虚拟网络扩展到虚拟机,并且使用覆盖网络通过交换结构无缝地传输分组。 换句话说,HNA提供基于硬件的无缝接入接口,用于通过数据中心的核心交换网络传送分组流的覆盖技术。
Abstract:
A first network client requests initiation of a data transfer with a second network client. An admission control facility (ACF) responds to the initiation request by performing admission analysis to determine whether to initiate the data transfer. The ACF sends one or more packets to the second network client. In response, the second network client sends acknowledgment packets back to the ACF. The ACF performs admission analysis based on the packets sent and the acknowledgment packets, and determines whether the data transfer should be initiated based on the analysis. The admission analysis may be based on a variety of factors, such as the average time to receive an acknowledgment for each packet, the variance of the time to receive an acknowledgment for each packet, a combination of these factors, or a combination of these and other factors.