Abstract:
Methods of transmitting a control signal using efficient multiplexing are disclosed. One of the method includes the steps of multiplexing a plurality of 1-bit control signals within a prescribed time-frequency domain by code division multiple access (CDMA) and transmitting the multiplexed control signals, wherein a plurality of the 1-bit control signals include a plurality of the 1-bit control signals for a specific transmitting side. Accordingly, reliability on 1-bit control signal transmission can be enhanced.
Abstract:
A method of transmitting a downlink control signal is disclosed, by which localized allocation and distributed allocation are efficiently used in transmitting a downlink control signal. The present invention includes multiplexing the downlink control signal in a manner of if there exists downlink data transmission to a prescribed UE, applying localized allocation to a transmission of the downlink control signal including the scheduling information on the uplink data transmission of the UE and applying distributed allocation to another transmission of the downlink control signal and transmitting the multiplexed downlink control signal.
Abstract:
A method for providing precoding weights for data symbols of data control subframes includes generating a downlink frame having control subframes which individually correspond to one of a plurality of downlink data subframes, and inserting weight information into each of the control subframes, such that the weight information is to be applied to data symbols present in the corresponding one of the data subframes. The method further includes transmitting the control subframes and the inserted weight information to a receiving device.
Abstract:
A method of transmitting uplink data in a wireless communication system is provided. The method includes receiving an uplink grant and transmitting uplink data through a resource block which is indicated by the resource block index in a control region of a slot indicated by the slot indicator in the subframe.
Abstract:
A method of allocating channels in a user equipment is disclosed. In particular, a method of allocating a plurality of Dedicated Physical Channels (DPCHs) and Enhanced Dedicated Channels (E-DCHs) in a user equipment of a multicode transmission system. The method includes determining whether a High Speed Downlink Shared Channel (HS-DSCH) is configured for the user equipment (UE) and determining a number of codes used by the DPCH and the E-DCH. The method further includes allocating the DPCH and the E-DCH channels to an I branch or a Q branch based on the number of codes used by the DPCH and the E-DCH and the HS-DSCH configuration.
Abstract:
A method for transmitting information of resources for use in transmission of ACK/NACK signals in a mobile communication system is disclosed. An example method for receiving ACK/NACK signals in a mobile communication system is also disclosed. When resources for transmission of data and resources for transmission of control information of the data are scheduled through virtual unit resources, the method identifies information of resources for receiving an ACK/NACK signal for transmission data mapped to information of at least one of a virtual unit resource allocated to the transmission data and a virtual unit resource allocated to control information of the transmission data, and receives the ACK/NACK signal for the transmission data through the information of resources for receiving the ACK/NACK signal.
Abstract:
A method for transforming data to reduce an amount of data in a communication system equipped with several sub-carriers, and a data transmission method using the same are disclosed. The method for transmitting data using a Discrete Cosine Transform (DCT) in a communication system based on a plurality of sub-carriers includes: a) performing a Discrete Cosine Transform (DCT) on first data; b) selecting a predetermined number of data from among the DCT-processed first data, and performing data processing on the selected data; and c) transmitting the data-processed resultant data to a reception end. A method for reducing an amount of overhead of transmission data for use in the multi-antenna communication system is disclosed.
Abstract:
A method for transmitting uplink signals, which include ACK/NACK signals, control signals other than the ACK/NACK signals, and data signals, is disclosed. The method comprises serially multiplexing the control signals and the data signals; sequentially mapping the multiplexed signals within a specific resource region in accordance with a time-first mapping method, the specific resource region including a plurality of symbols and a plurality of virtual subcarriers; and arranging the ACK/NACK signals at both symbols near symbols to which a reference signal of the plurality of symbols is transmitted. Thus, the uplink signals can be transmitted to improve receiving reliability of signals having high priority.
Abstract:
A method of exchanging channel quality information between a base station and a user equipment in a mobile communication system is disclosed. A method of transmitting channel quality information in a mobile communication system which transmits channel quality information from a user equipment to a base station comprises transmitting channel quality information, which is measured based on a signal received from the base station, to the base station, receiving feedback information of the channel quality information from the base station, and transmitting difference information to the base station, the difference information for matching the channel quality information transmitted from the user equipment with channel quality information received by the base station based on the feedback information.
Abstract:
A method of transmitting data in a wireless communication system is provided. The method includes transmitting downlink scheduling information regarding downlink radio resource allocation and uplink scheduling information regarding uplink radio resource allocation on a downlink control channel, transmitting downlink data on a downlink data channel according to the downlink scheduling information, and detecting an acknowledgement (ACK)/negative-acknowledgement (NACK) signal for the downlink data from a radio resource exclusively allocated to the ACK/NACK signal. According to the present invention, when an error occurs in a downlink control channel due to deterioration of a channel condition, the error can be promptly handled using an error detection protocol agreed between a user equipment and a base station. Therefore, data can be transmitted with higher reliability.