摘要:
The invention relates to microporous membranes comprising polymer and having well-balanced permeability, shutdown temperature, and pin puncture strength. The invention also relates to methods for making such membranes, and the use of such membranes as battery separator film in, e.g., lithium ion secondary batteries.
摘要:
This invention relates to a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(−0.94 (mole % ethylene incorporated)+100), when 10 to 60 mole % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mole % ethylene is present in the co-oligomer, and 3) X=(1.83*(mole % ethylene incorporated)−83), when 70 to 90 mole % ethylene is present in the co-oligomer. This invention also relates to a homo-oligomer, comprising propylene, wherein the oligomer has: at least 93% allyl chain ends, an Mn of about 500 to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 100 ppm aluminum. This invention also relates to a process of making homo-oligomer, comprising propylene, wherein the productivity is greater than 4500 g/mmol Hf (or Zr)/hour.
摘要:
This invention relates to a composition comprising a multiblock polyolefin represented by the formula: PO—C(R11)(R12)—C(R13)═C(R14)—C(R15)(R16)—PO*, or isomers thereof, wherein R11, R12, R13, R14, R15, and R16, are each independently a substituted or unsubstituted C1 through C4 hydrocarbyl group or a hydrogen; PO and PO* are polyolefins; PO and PO* are each independently a substituted or unsubstituted hydrocarbyl group having 9 to 4000 carbon atoms, provided that at least one of PO and PO* are C20 or greater, said polyolefin having: 1) an internal unsaturation as shown by the 13C NMR peak at between about 128 and about 132 ppm; 2) an Mn ratio “Z”=0.1 to 10 where Z is the Mn (as determined by 13C NMR) divided by Mn (as determined according to Gel Permeation Chromotography using polystyrene standards); and 3) optionally, from 0.3(J) and 0.75(J) internal unsaturations per 1000 carbons as determined by 1H NMR spectroscopy, where J is the number of reactive groups per 1000 carbons for the mixture of vinyl terminated polyolefins that become PO and PO*, before they are coupled by an alkene metathesis catalyst.
摘要翻译:本发明涉及一种组合物,其包含由式:PO-C(R 11)(R 12)-C(R 13)= C(R 14)-C(R 15)(R 16)-PO *表示的多嵌段聚烯烃或其异构体, 其中R11,R12,R13,R14,R15和R16各自独立地为取代或未取代的C1至C4烃基或氢; PO和PO *是聚烯烃; PO和PO *各自独立地为具有9至4000个碳原子的取代或未取代的烃基,条件是PO和PO *中的至少一个为C20或更大,所述聚烯烃具有:1)如13 C NMR所示的内部不饱和度 在约128至约132ppm之间的峰; 2)Mn比“Z”= 0.1〜10,其中Z为Mn(通过13 C NMR测定)除以Mn(根据使用聚苯乙烯标准品的凝胶渗透色谱法测定); 和3)任选地,通过1 H NMR光谱确定的每1000个碳的0.3(J)和0.75(J)内部不饱和度,其中J是成为PO和PO的乙烯基封端的聚烯烃的混合物的每1000个碳的反应性数 *,在它们通过烯烃复分解催化剂偶合之前。
摘要:
The invention describes the preparation of long chain branching in high density polyethylene by using metallocene catalysts in the presence of ethylene.
摘要:
Isotactic polypropylene ethylene-propylene copolymer blends and in-line processes for producing. The blends may have between 1 and 50 wt % of isotactic polypropylene with a melt flow rate of between 0.5 and 20,000 g/10 min and a melting peak temperature of 145° C. or higher, and wherein the difference between the DSC peak melting and the peak crystallization temperatures is less than or equal to 0.5333 times the melting peak temperature minus 41.333° C., and between 50 and 99 wt % of ethylene-propylene copolymer including between 10 wt % and 20 wt % randomly distributed ethylene with a melt flow rate of between 0.5 and 20,000 g/10 min, wherein the copolymer is polymerized by a bulk homogeneous polymerization process, and wherein the total regio defects in the continuous propylene segments of the copolymer is between 40 and 150% greater than a copolymer of equivalent melt flow rate and wt % ethylene polymerized by a solution polymerization process.
摘要:
Plastic toughened plastics include a polymer composition having a polypropylene component and a second polymer component. The polypropylene component is present in an amount from about 50 to about 95 weight percent based on the total weight of the blend. The second polymer component is present in an amount from about 5 to about 50 weight percent based on the total weight of the blend, is a BOCD or BCD blend of at least two ssPE components, and has an overall density greater than about 0.90 g/cm3. Optionally, the plastic toughened plastics include one or more third polymer component selected from propylene-olefin elastomers and ethylene-propylene rubbers, which are present in an amount from about 1 to about 50 weight percent, based on the total weight of the blend.
摘要:
A thermoplastic film including a microporous polymeric membrane; and a non-woven web bonded to the polymeric microporous membrane, wherein the web comprises a plurality of fibers comprising polyolefin having a Tm≧85.0° C. and a Te-Tm≦10.0° C.
摘要:
The invention relates to a multi-layer, microporous polyolefin membrane having appropriate permeability, pin puncture strength, shutdown temperature, shutdown speed, meltdown temperature, and thickness uniformity. The invention also relates to a battery separator formed by such multi-layer, microporous membrane, and a battery comprising such a separator. Another aspect of the invention relates to a method for making the multi-layer, microporous polyolefin membrane, a method for making a battery using such a membrane as a separator, and a method for using such a battery.
摘要:
Provided are methods of producing polymers with broadened molecular weight and/or composition distribution in a continuous homogeneous polymerization system utilizing reactor temperature gradients, reactor polymer concentration gradients, monomer concentration gradients, catalyst concentration gradients, and combinations thereof in the polymerization reactor. Such methods are particularly suitable when utilizing metallocene catalysts and other single-site catalysts, which generally produce polymers with narrow molecular weight and composition distribution.
摘要:
Provided are methods of producing polymers with broadened molecular weight and/or composition distribution in a continuous homogeneous polymerization system utilizing reactor temperature gradients, reactor polymer concentration gradients, monomer concentration gradients, catalyst concentration gradients, and combinations thereof in the polymerization reactor. Such methods are particularly suitable when utilizing metallocene catalysts and other single-site catalysts, which generally produce polymers with narrow molecular weight and composition distribution.