Abstract:
A thin film transistor, a manufacturing method thereof and an array substrate are provided. The thin film transistor comprises: a gate electrode (11), a source electrode (15) and a drain electrode (16), and the thin film transistor further comprises a buffer layer (11) which is directly provided at one side or both sides of at least one of the gate electrode (11), the source electrode (15) and the drain electrode (16), wherein, the buffer layer (11) and at least one of the gate electrode (11), the source electrode (15) and the drain electrode (16) directly contacting the buffer layer (11) are conformal. Therefore, the adhesion between an electrode of the thin film transistor and a film layer contacting it is improved and at the same time an atom in the electrode of the thin film transistor is effectively prevented from diffusing to the film layer connected with it, and the reliability of the thin film transistor is improved and the production cost is reduced.
Abstract:
The present disclosure discloses a pixel structure and a preparation method thereof, a pixel display method and an array substrate. The pixel structure comprises: a thin film transistor TFT for controlling a Micro-Electro-Mechanical System MEMS switch; the Micro-Electro-Mechanical System MEMS switch being used for controlling transmission amount of outgoing light of a quantum dot light emitting diode QLED device; the quantum dot light emitting diode QLED device being a top emission type for emitting light constantly based on a constant light emitting driving signal.
Abstract:
A boosting circuit, a backlight driving circuit and a backlight module are provided. The boosting circuit comprises a boosting chip (U1), an energy-storage inductor (L1), a freewheeling diode (D1), a first capacitor (C1), and a current mirror unit (U2), wherein an input terminal of an inputting branch of the current mirror unit (U2) IS connected with the cathode of the freewheeling diode (D1), and an output terminal of the inputting branch is connected with the signal input terminal (Vin) of the boosting circuit through a first resistor (R1), an input terminal of an outputting branch of the current mirror unit (U2) IS connected with the cathode of the freewheeling diode (D1), an output terminal of the outputting branch is grounded through a second resistor (R2), an ungrounded terminal of the second resistor (R2) is connected with a signal feedback pin of the boosting chip. The boosting circuit realizes the tracking of changes of the input voltage by the output voltage under the precondition that parameters of respective elements are unchanged, and achieves the effect that a voltage difference between the output voltage and the input voltage is fixed.
Abstract:
A module structure, a touch module, a display module and a display apparatus are provided. The module structure includes: a substrate including a base substrate, wherein the base substrate includes a functional area and a bonding area on one side of the functional area; a plurality of bonding terminals are provided in the bonding area and arranged along a first direction and each bonding terminal extends along a second direction, and at least one floating terminal is provided in the bonding area and on at least one side of the plurality of bonding terminals in the first direction; the module structure further includes a flexible circuit board, including: a plurality of first connection terminals provided corresponding to the plurality of bonding terminals, and at least one second connection terminal provided corresponding to the at least one floating terminal.
Abstract:
A display apparatus and a preparation method thereof, the display apparatus includes a display panel whose display area has a first hole; a polarizer disposed on one side of the display panel, wherein the polarizer has a blind hole, the blind hole penetrates through an optical characteristic layer in the polarizer, and an orthographic projection of the blind hole on the display panel at least partially overlaps with the first hole; a first optical adhesive layer disposed on a surface of the polarizer away from the display panel, wherein the first optical adhesive layer includes a planar portion and a convex portion, and the convex portion is filled in the blind hole; a cover plate disposed on one side of the first optical adhesive layer away from the display panel.
Abstract:
The present disclosure provides a support structure and a manufacturing method thereof, and a foldable display screen. The support structure includes: a first support plate made of flexible conductive material; at least two second support plates arranged on the first support plate with interval, the second support plates being made of rigid conductive material, at least a part of surface of each of the second support plates being in contact with the first support plate.
Abstract:
The present application provides a display substrate having a plurality of subpixel areas. The display substrate includes a base substrate; a first electrode layer on the base substrate and including a plurality of first electrodes respectively in the plurality of subpixel areas; an auxiliary electrode layer; and an insulating layer between the first electrode layer and the auxiliary electrode layer. The first electrode layer and the auxiliary electrode layer are spaced apart and insulated from each other by the insulating layer. An orthographic projection of each individual one of the plurality of first electrodes on the base substrate at least partially overlap with an orthographic projection of the auxiliary electrode layer on the base substrate. Each of the plurality of first electrodes is electrically connected to a pixel circuit configured to drive light emission in a respective one of the plurality of subpixel areas.
Abstract:
A data transmission method comprises: receiving and storing image data, wherein the image data comprises first data and second data, the first data is encrypted verification data, and the second data is original data; comparing the first data with the second data in stored image data; replacing the second data with the first data, if the second data and the first data are inconsistent.
Abstract:
The present application relates to a fingerprint identification module and a display device. The fingerprint identification module includes: a first lens assembly; a second lens assembly with a primary optical axis not parallel to a primary optical axis of the first lens assembly; a reflecting mirror assembly, including a reflecting mirror and a rotating shaft coupled to the reflecting mirror, wherein the rotating shaft can drive the reflecting mirror to rotate, and the reflecting mirror includes a reflecting surface; and a light-sensitive element located at a light exiting side of the second lens assembly. The first lens assembly converges fingerprint-reflected light and projects the fingerprint-reflected light onto the reflecting surface, the reflecting surface reflects the fingerprint-reflected light to the second lens assembly, the second lens assembly converges the fingerprint-reflected light to the light-sensitive element, the light-sensitive element converts the fingerprint-reflected light into an electrical signal to identify fingerprint information.
Abstract:
A pixel circuit includes a liquid crystal capacitor, a selection unit, a gray scale writing unit, and a reset unit. The selection unit is configured to determine whether to charge the liquid crystal capacitor according to a row control signal and a column control signal. The gray scale writing unit is configured to apply a gray scale voltage signal to the liquid crystal capacitor, when the selection unit determines to charge the liquid crystal capacitor, and an application duration of the gray scale voltage signal controls a gray scale level displayed by the liquid crystal capacitor. The reset unit is configured to disconnect the gray scale writing unit and the liquid crystal capacitor to stop charging the liquid crystal capacitor upon receiving the reset signal, and reset the voltage of the liquid crystal capacitor to an initial state.