Abstract:
A digital microfluidic device includes a thin film transistor driving substrate. The thin film transistor driving substrate includes a first base substrate; a plurality of sample actuating units; a plurality of sample position detecting units; a dielectric insulating layer on a side of the plurality of sample actuating units and the plurality of sample position detecting units distal to the first base substrate; and a first hydrophobic layer on a side of the dielectric insulating layer distal to the first base substrate. Each of the plurality of sample actuating units includes a first electrode configured to drive transportation of a liquid droplet on the digital microfluidic device. Each of the plurality of sample position detecting units includes a photosensor configured to detect presence or absence of the liquid droplet on a position corresponding to the photosensor.
Abstract:
A substrate for medical test and a gene sequencing method thereof are disclosed. The substrate for medical test includes a micro flow channel substrate, a first substrate, and a second substrate. A side of the micro flow channel substrate facing the first substrate is provided with at least one first micro flow channel, and the first substrate includes a first sample inlet and a first sample outlet which are in communication with the first micro flow channel; a side of the micro flow channel substrate facing the second substrate is provided with at least one second micro flow channel, and the second substrate includes a second sample inlet and a second sample outlet which are communication with the second micro flow channel.
Abstract:
An electrochemical detection chip includes a first substrate and a second substrate opposite to each other, a plurality of driving electrodes, first detection electrodes and second detection electrodes. The plurality of driving electrodes are arranged on a side of the first substrate facing toward the second substrate and are arranged independently. The first detection electrodes and the second detection electrodes are arranged at a plurality of positions on a side of the second substrate facing toward the first substrate that are directly opposite at least a part of the plurality of driving electrodes, and are spaced apart from each other.
Abstract:
A digital microfluidic device includes a thin film transistor driving substrate. The thin film transistor driving substrate includes a first base substrate; a plurality of sample actuating units; a plurality of sample position detecting units; a dielectric insulating layer on a side of the plurality of sample actuating units and the plurality of sample position detecting units distal to the first base substrate; and a first hydrophobic layer on a side of the dielectric insulating layer distal to the first base substrate. Each of the plurality of sample actuating units includes a first electrode configured to drive transportation of a liquid droplet on the digital microfluidic device. Each of the plurality of sample position detecting units includes a photosensor configured to detect presence or absence of the liquid droplet on a position corresponding to the photosensor.
Abstract:
A biosensor, and a preparation and biosensing method therefor. The biosensor includes: a sensing substrate, wherein a plurality of sensing suspending arms arranged in an array are arranged on the sensing substrate, and the sensing suspending arms have identification markers; and a detection substrate, the detection substrate including a plurality of light detection assemblies arranged in an array, wherein the light detection assemblies and the sensing suspending arms are arranged in one-to-one correspondence, each of the light detection assemblies includes a photodiode and a thin film transistor, and the photodiode is connected to the thin film transistor.
Abstract:
A touch electrode layer and a touch panel are provided. The touch electrode layer includes a first touch electrode and a second touch electrode. At least a part of the first touch electrode is surrounded by the second touch electrode so that the first touch electrode has a first touch electrode portion surrounded by the second touch electrode, and the first touch electrode portion surrounded by the second touch electrode is of a circular or oval shape; a first gap is formed between the first touch electrode portion and the second touch electrode which surrounds the first touch electrode portion; and the first touch electrode and the second touch electrode are arranged in a same layer.
Abstract:
Embodiments of the present disclosure provide an array substrate and a manufacturing method thereof, and a display device. The array substrate includes a plurality of pixel structures. The pixel structure includes a gate electrode, a gate electrode insulating layer, an active layer, source and drain electrodes, and a passivation layer which are sequentially stacked. The pixel structure further includes a first electrode and a second electrode. The first electrode is located between the gate electrode insulating layer and the passivation layer, and electrically connected to one of the source electrode and the drain electrode. The second electrode is located above the passivation layer. A first via passing through the passivation layer is provided, and the second electrode is electrically connected to one of the source electrode and the drain electrode through the first via.
Abstract:
A touch electrode layer and a touch panel are provided. The touch electrode layer includes a first touch electrode and a second touch electrode. At least a part of the first touch electrode is surrounded by the second touch electrode so that the first touch electrode has a first touch electrode portion surrounded by the second touch electrode, and the first touch electrode portion surrounded by the second touch electrode is of a circular or oval shape; a first gap is formed between the first touch electrode portion and the second touch electrode which surrounds the first touch electrode portion; and the first touch electrode and the second touch electrode are arranged in a same layer.
Abstract:
The disclosure provides a shift register unit, a shift register, a driving method and an array substrate. The shift register unit may comprise a touch-controlled circuit comprising a touch-controlled turning-on module and a touch-controlled turning-off module, wherein a control of the touch-controlled turning-on module is connected to a touch-controlled turning-on signal, an input is connected to a negative power supply signal, and an output is connected to an output terminal, and the touch-controlled turning-on signal is a pulse signal at a start of a touch controlling period; and a control of the touch-controlled turning-off module is connected to a touch-controlled turning-off signal, an input of the touch-controlled turning-off module is connected to a positive power supply signal, and an output of the touch-controlled turning-off module is connected to the output terminal, wherein the touch-controlled turning-off signal is a pulse signal at an end of the touch controlling period.
Abstract:
An electronic paper module, an electronic paper display device and a manufacturing method of an electronic paper module are disclosed, and the electronic paper module including an array substrate and an electronic ink containing layer, a transparent sealant, a transparent conductive film layer and a protective layer disposed in order on the array substrate, the electronic ink containing layer is provided with electronic ink containing holes therein, the electronic ink containing holes are provided with electronic ink therein. The transparent sealant is used to encapsulate the electronic ink containing layer, and the transparent conductive film layer is disposed over the transparent sealant. Because no microcapsule structure is required in the electronic paper module, a process flow is simplified, and production costs are effectively reduced.