Abstract:
An electronic device (such as a cellular telephone) automatically installs and personalizes updates to an applet on a secure element in the electronic device. In particular, when a digitally signed update package containing the update is received from an updating device (such as a server), the secure element identifies any previous versions of the applet installed on the secure element. If there are any previously installed versions, the secure element verifies the digital signature of the update package using an encryption key associated with a vendor of the secure element. Then, the secure element uninstalls the previous versions of the applet and exports the associated user data. Next, the secure element installs the update to the applet, and personalizes the new version of the applet using the user data.
Abstract:
The disclosed embodiments related to a first electronic device (such as a cellular telephone) that includes a secure element. In response to a challenge and a request for a secure-element identifier associated with the secure element, which are received from a second electronic device (such as a trusted services manager that loads content onto the secure element), the secure element provides to the second electronic device: the secure-element identifier, a certificate associated with a provider of the secure element, and a digital signature. The digital signature may include a signed version of the challenge and the secure-element identifier, which are encrypted using an encryption key associated with a provider of the secure element. In this way, the second electronic device may certify the secure element.
Abstract:
To facilitate conducting a financial transaction via wireless communication between a portable electronic device (such as a smartphone) and another electronic device (such as a point-of-sale terminal), the portable electronic device may, after a final command is received from the other electronic device, determine a unique transaction identifier for the financial transaction. In particular, the final command may be specific to a payment applet, stored in a secure element in the portable electronic device, which conducts the financial transaction. The secure element may generate the unique transaction identifier based on financial-account information associated with the payment applet, which is communicated to the other electronic device. Moreover, the financial-account information may specify a financial account that is used to pay for the financial transaction. Next, the secure element may provide, to a processor in the portable electronic device, an end message for the financial transaction with the unique transaction identifier.
Abstract:
Methods for operating a portable electronic device to conduct a mobile payment transaction at a merchant terminal are provided. The electronic device may verify that the current user of the device is indeed the authorized owner by requiring the current user to enter a passcode. If the user is able to provide the correct passcode, the device is only partly ready to conduct a mobile payment. In order for the user to fully activate the payment function, the user may have to supply a predetermined payment activation input such as a double button press that notifies the device that the user intends to perform a financial transaction in the immediate future. The device may subsequently activate a payment applet for a predetermined period of time during which the user may hold the device within a field of the merchant terminal to complete a near field communications based mobile payment transaction.
Abstract:
To facilitate conducting a financial transaction via wireless communication between an electronic device and another electronic device, a secure element in the electronic device receives, from a third party, a notification associated with a financial transaction. This third party may be independent of a counterparty in the financial transaction, such as: a provider of the electronic device or a payment network that processes payment for the financial transaction. In response to the notification, the secure element requests, from the third party, receipt information associated with the financial transaction, and then receives the receipt information from the third party. This receipt information may include a first-level information, such as payment status. Alternatively or additionally, the receipt information may include a second-level information, such as an itemized list of purchased items, links to information and/or discounts.
Abstract:
Systems, methods, and computer-readable media for managing near field communications during a low power management mode of an electronic device are provided that may make credentials of a near field communication (“NFC”) component appropriately secure and appropriately accessible white also limiting the power consumption of the NFC component and of other components of the electronic device.
Abstract:
A computing device can receive a request from a requesting device for one or more data elements associated with a digital credential. The computing device can store the digital credential which includes a set of data elements and a security object. The computing device can determine a subset of the data elements based at least in part on the request. The computing device can generate the response, wherein the response includes the subset of the data elements and the security object. The computing device can transmit the response to the requesting device.
Abstract:
Systems, methods, and computer-readable media for communicating electronic device secure element data over multiple paths for online payments are provided. In one example embodiment, a method includes, inter alia, at a commercial entity subsystem, receiving, from an electronic device, device transaction data that includes credential data indicative of a payment credential on the electronic device for funding a transaction with a merchant subsystem, accessing a transaction identifier, deriving a transaction key based on transaction key data that includes the accessed transaction identifier, transmitting, to one of the merchant subsystem and the electronic device, merchant payment data that includes a first portion of the credential data and the accessed transaction identifier, and sharing, with a financial institution subsystem using the transaction key, commercial payment data that includes a second portion of the credential data that is different than the first portion of the credential data. Additional embodiments are also provided.
Abstract:
An embodiment includes a method to increase the efficiency of security checkpoint operations. A security checkpoint kiosk serves as a Relying Party System (RPS). The RPS establishes a secure local connection between the RPS and a User Mobile-Identification-Credential Device (UMD). The RPS sends a user information request to the UMD, via the secure local connection, seeking release of user information associated with a Mobile Identification Credential (MIC). The RPS obtains authentication of the user information received in response to the user information request. The RPS retrieves user travel information based on the user information. The RPS determines that the user travel information matches the user information. When the user travel information matches the user information, the RPS approves the user to proceed past the security checkpoint kiosk.
Abstract:
Systems, methods, and computer-readable media for managing near field communications during a low power management mode of an electronic device are provided that may make credentials of a near field communication (“NFC”) component appropriately secure and appropriately accessible while also limiting the power consumption of the NFC component and of other components of the electronic device.