Abstract:
In some underground boring applications the exit location of the underground bore may be located such that drill pipe and material pipe sections cannot be conveniently deployed therefrom (e.g., a basement of a building, the inside of another pipe, or a small manhole space). In such applications, push reaming functionality is often the preferred method of reaming because the pipe section can be deployed and installed from a pit where the bore is started during a push reaming operation. The present disclosure provides a new push reaming drill head as well as a new method of push reaming.
Abstract:
The invention relates to track systems 14, 14′ that may be used to convert steerable, all-wheel drive construction equipment to steerable, multi-track construction vehicles 10. A preferred embodiment of the track system 14, 14′ includes a frame 60, 182 having a reinforcing enclosure 150, 230, a plurality of track engaging rollers 82-86, 202-206, a sprocket 102, 214, and an endless track 76, 198 operatively connected to the frame 60, 182. Tension on the endless track 76, 198 is maintained with two tensioning members 170, 244 operatively connected to the forwardmost roller 82, 202. The track system 14, 14′ preferably includes a limiting apparatus 300 that is configured to restrict the rotational movement “r” of the frame 60, 182 relative to a vehicle axle 16 to which it is attached. The limiting apparatus 300 has a first component 40, which is associated with the vehicle axle 16, is configured and arranged to interact with a second component 262, which is associated with the frame of the track system 14, 14′. Preferably, the limiting apparatus 300 is adjustable such that the range of rotational movement “r” can be varied.
Abstract:
The invention relates to a self-propelled, wheeled vehicle that may be converted into a multi-track self-propelled vehicle using one or more track assemblies. Each track assembly includes a carriage with a main frame that support forward and rearward idler wheels and a plurality of centrally located, inner bogey wheels, and an outrigger beam that supports a plurality of centrally located, outer bogey wheels. One of the idler wheels is movably connected to the main frame and is movable by an actuator. The carriage is removably connected to a spindle of a vehicle by an attachment assembly. The attachment assembly includes a first or lower section and a second or upper section that generally encircle a portion of the spindle housing, and which are connected thereto by a plurality of fastening elements. A sprocket is operatively connected to a wheel hub of the spindle either directly or indirectly by way of a spacer element. A flexible endless track is entrained about the idler wheels, the bogey wheels and the sprocket.
Abstract:
A series of scans is generated for a subsurface and a derivative image is created using the series of subsurface images. One or more tests are performed on the derivative image, and a subsurface object is detected based on the one or more tests. A sensor is configured to generate a series of scans for a subsurface and a processor is coupled to the sensor. The processor is configured to execute stored program instructions that cause the processor to generate a series of images of the subsurface using the series of scans, create a derivative image using the series of subsurface images, perform one or more tests on the derivative image, and detect a subsurface object based on the one or more tests.
Abstract:
A method and apparatus for providing for a balanced rotor having cutting teeth attached thereto. The longitudinal length of the rotor is conceptually divided in half by a plane disposed perpendicular to the axis of rotation. The cutting teeth are arranged in a plurality of helices about the rotor so each half of the rotor is statically balanced. The cutting teeth are further arranged so the centers of mass of the two halves are equidistant from the dividing plane. A gap may exist between the ends of the rotor and the nearest tooth encountered in each helix. The gaps for different helices may be different, however, the gaps at each end of each helix are the same length. The above result in a rigidly balanced rotor.
Abstract:
The present disclosure relates to a tunneling apparatus including a drill head including a main body and a steering member that is movable relative to the main body. The tunneling apparatus includes a steering target attached to the main body. The tunneling apparatus also includes a camera mounted within the main body. Further, the tunneling apparatus includes a shell position indicator mounted to the steering member in the field of view of the camera. The shell position indicator is adapted to indicate relative movement between the target and the shell position indicator. Additionally, the position indicator frames the target when no relative movement between the target and shell position indicator is indicated.
Abstract:
The invention relates to track systems 14, 14′ that may be used to convert steerable, all-wheel drive construction equipment to steerable, multi-track construction vehicles 10. A preferred embodiment of the track system 14, 14′ includes a frame 60, 182 having a reinforcing enclosure 150, 230, a plurality of track engaging rollers 82-86, 202-206, a sprocket 102, 214, and an endless track 76, 198 operatively connected to the frame 60, 182. Tension on the endless track 76, 198 is maintained with two tensioning members 170, 244 operatively connected to the forwardmost roller 82, 202. The track system 14, 14′ preferably includes a limiting apparatus 300 that is configured to restrict the rotational movement “r” of the frame 60, 182 relative to a vehicle axle 16 to which it is attached. The limiting apparatus 300 has a first component 40, which is associated with the vehicle axle 16, is configured and arranged to interact with a second component 262, which is associated with the frame of the track system 14, 14′. Preferably, the limiting apparatus 300 is adjustable such that the range of rotational movement “r” can be varied.
Abstract:
Systems for locating an underground utility include means for generating detection data representative of an underground utility within a subsurface of the earth. Systems may also include means for generating geographic positioning data representative of a geographic position of the underground utility and means for storing the geographic positioning data and the detection data. Means are provided for associating the geographic positioning data with the detection data to generate location data representative of a location of the underground utility within the subsurface.
Abstract:
A system and method provide for controlling an HDD machine to move a cutting tool along an underground path in accordance with a pre-established bore plan. Cutting tool movement is detected from above-ground. During HDD machine operation, one or more control programs are accessed. Each of the control programs can cause the HDD machine to execute a sequence of pre-defined HDD machine actions. A particular control program of the one or more control programs is executed to augment movement of a drill pipe or the cutting tool.
Abstract:
Systems and methods for sensing at an underground drilling device in communication with an above-ground locator involve transmitting a radar probe signal from the underground drilling device. A radar return signal is received at the underground drilling device. The radar return signal is processed at the underground drilling device to produce sensor data. The sensor data is transmitted in a form suitable for reception by the above-ground locator.