摘要:
Each of the memory blocks includes: a first conductive layer expanding in parallel to the substrate over the first area, n layers of the first conductive layers being formed in a lamination direction and shared by the plurality of memory strings; a first semiconductor layer; and an electric charge accumulation layer. The memory strings are arranged with m columns in a second direction for each of the memory blocks. The wiring layers are arranged in the second direction, formed to extend to the vicinity of one end of the first conductive layer in the first direction from one side of the memory block, and connected via contact plugs to the first conductive layers. A relation represented by (Formula 1) is satisfied: (Formula 1) m>=n
摘要翻译:每个存储块包括:在第一区域上平行于衬底扩展的第一导电层,n个第一导电层的层以层叠方向形成并由多个存储器串共享; 第一半导体层; 和电荷蓄积层。 对于每个存储块,存储器串按第二方向布置有m列。 布线层沿第二方向布置,形成为从存储块的一侧沿第一方向延伸到第一导电层的一端附近,并且经由接触插塞连接到第一导电层。 满足式(1)所示的关系:(式1)m> = n
摘要:
A non-volatile semiconductor memory device includes a first columnar semiconductor layer and a plurality of first conductive layers formed such that a charge storage layer for storing charges is sandwiched between the first conductive layers and the first columnar semiconductor layer. Also, the non-volatile semiconductor memory device includes a second columnar semiconductor layer and a second conductive layer formed such that an insulating layer is sandwiched between the second conductive layer and the second columnar semiconductor layer, the second conductive layer being repeatedly provided in a line form by providing a certain interval in a first direction perpendicular to a laminating direction. A first sidewall conductive layer being in contact with the second conductive layer and extending in the first direction is formed on a sidewall along a longitudinal direction of the second conductive layer.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes: first and second stacked bodies, first and second semiconductor pillars, a connection portion, a memory film, and a partitioning insulating layer. The stacked bodes include electrode films stacked along a first axis and an inter-electrode insulating film provided between the electrode films. Through-holes are provided in the stacked bodies. The semiconductor pillars are filled into the through-holes. The connection portion electrically connects the semiconductor pillars. The memory film is provided between the semiconductor pillars and the electrode films. The partitioning insulating layer partitions the first and second electrode films. A side surface of the first through-hole on the partitioning insulating layer side and a side surface of the second through-hole on the partitioning insulating layer side have a portion parallel to a plane orthogonal to a second axis from the first stacked body to the second stacked body.
摘要:
A nonvolatile semiconductor memory device, includes: a stacked body including a plurality of insulating films alternately stacked with a plurality of electrode films, the electrode films being divided to form a plurality of control gate electrodes aligned in a first direction; a plurality of semiconductor pillars aligned in a stacking direction of the stacked body, the semiconductor pillars being arranged in a matrix configuration along the first direction and a second direction intersecting the first direction to pierce the control gate electrodes; and a connection member connecting a lower end portion of one of the semiconductor pillars to a lower end portion of one other of the semiconductor pillars, an upper end portion of the one of the semiconductor pillars being connected to a source line, an upper end portion of the one other of the semiconductor pillars being connected to a bit line. At least some of the control gate electrodes are pierced by two of the semiconductor pillars adjacent to each other in the second direction. Two of the semiconductor pillars being connected to each other by the connection member pierce mutually different control gate electrodes.
摘要:
A non-volatile semiconductor storage device 10 has a plurality of memory strings 100 with a plurality of electrically rewritable memory transistors MTr1-MTr4 connected in series. The memory string 100 includes a columnar semiconductor CLmn extending in a direction perpendicular to a substrate, a plurality of charge accumulation layers formed around the columnar semiconductor CLmn via insulating films, and selection gate lines on the drain side SGD contacting the columnar semiconductor to configure transistors. The selection gate lines on the drain side SGD have lower selection gate lines on the drain side SGDd, each of which is arranged with an interval with a certain pitch, and upper selection gate lines on the drain side SGDu located on a higher layer than the lower selection gate lines on the drain side SGDd, each of which is arranged on gaps between the lower selection gate lines on the drain side SGDd.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes a memory unit and a non-memory unit. The memory unit includes a stacked structure including electrode films stacked in a first direction, and a interelectrode insulating film provided between the electrode films, a select gate electrode stacked with the stacked structure along the first direction, a semiconductor pillar piercing the stacked structure and the select gate electrode along the first direction and a pillar portion memory layer provided between the electrode films and the semiconductor pillar. The non-memory unit includes a dummy conductive film including a portion in a layer being identical to at least one of the electrode films, a dummy select gate electrode in a layer being identical to the select gate electrode, a first non-memory unit contact electrode electrically connected to the dummy conductive and a second non-memory unit contact electrode electrically connected to the dummy select gate.
摘要:
A multilayer body is formed by alternately stacking electrode films serving as control gates and dielectric films in a direction orthogonal to an upper surface of a silicon substrate. Trenches extending in the word line direction are formed in the multilayer body and a memory film is formed on an inner surface of the trench. Subsequently, a silicon body is buried inside the trench, and a charge storage film and the silicon body are divided in the word line direction to form silicon pillars. This simplifies the configuration of memory cells in the bit line direction, and hence can shorten the arrangement pitch of the silicon pillars, decreasing the area per memory cell.
摘要:
A nonvolatile semiconductor memory device that have a new structure are provided, in which memory cells are laminated in a three dimensional state so that the chip area may be reduced. The nonvolatile semiconductor memory device of the present invention is a nonvolatile semiconductor memory device that has a plurality of the memory strings, in which a plurality of electrically programmable memory cells is connected in series. The memory strings comprise a pillar shaped semiconductor; a first insulation film formed around the pillar shaped semiconductor; a charge storage layer formed around the first insulation film; the second insulation film formed around the charge storage layer; and first or nth electrodes formed around the second insulation film (n is natural number more than 1). The first or nth electrodes of the memory strings and the other first or nth electrodes of the memory strings are respectively the first or nth conductor layers that are spread in a two dimensional state.
摘要:
A nonvolatile semiconductor memory device includes: a stacked body with a plurality of insulating films and electrode films alternately stacked therein, through which a through hole extending in the stacking direction is formed; a semiconductor pillar buried inside the through hole; and a charge storage layer located on both sides of each of the electrode films in the stacking direction and insulated from the electrode film and the semiconductor pillar.
摘要:
A nonvolatile semiconductor memory device includes a first stacked body on a silicon substrate, and a second stacked body is provided thereon. The first stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films, and a first portion of a through-hole extending in a stacking direction is formed. The second stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films, and a second portion of the through-hole is formed. A memory film is formed on an inner face of the through-hole, and a silicon pillar is buried in an interior of the through-hole. A central axis of the second portion of the through-hole is shifted from a central axis of the first portion, and a lower end of the second portion is positioned lower than an upper portion of the first portion.