Abstract:
The present invention provides a holographic recording medium comprising: an optical recording layer, which optical recording layer includes one of a polymer compound having photoisomerizable groups in the side chain thereof and a polymer compound in which photoisomerizable molecules are dispersed therein, which recording layer records a hologram by having optical anisotropy induced by irradiation with a writing light having a predetermined wavelength thereon; and an optical filter layer formed on at least one side of the optical recording layer, which optical filter layer allows transmission of the writing light and a reading light having a predetermined wavelength irradiated on the optical recording layer, for reproducing the hologram recorded on the optical recording layer, therethrough and blocks light having a shorter wavelength than the wavelength of the writing light.
Abstract:
An optical recording medium including an optically-active recording layer, wherein the recording layer includes a polymer microcrystalline phase.
Abstract:
According to an aspect of the invention, a fixing device includes a first laser unit and a second laser unit. The first laser unit outputs a first laser beam to irradiate a visible image formed of image forming material on a recording medium with the first laser beam. The second laser unit outputs a second laser beam to irradiate the visible image with the second laser beam after being irradiated with the first laser beam. The first laser beam and the second laser beam is configured to satisfy relations: W1 t2, W1 is an optical output per unit area of the first laser beam, W2 is an optical output per unit area of the second laser beam, t1 is an irradiation time per unit area of the first laser beam, and t2 is an irradiation time per unit area of the second laser beam.
Abstract:
A perimidine-based squarylium dye contains a compound represented by Formula (I), the compound containing an isomer A and satisfying the following formula: Pa≧95(%) wherein the isomer A is an isomer of the peak shown in the longest retention time among all peaks due to isomers obtained by analysis of the compound by means of reversed-phase high-performance liquid chromatography, and Pa represents a value of the peak area of the isomer A relative to the peak area of all peaks
Abstract:
A laser fixing apparatus includes: a laser light generator that generates laser light to be projected onto a recording medium. A first condenser reflects and condenses the light generated by reflection of the laser light at an irradiation position of the recording medium, such that the reflected and condensed light is re-projected at the irradiation position and/or near the irradiation position.
Abstract:
A fixing device includes a first irradiation unit that irradiates a laser beam in a first irradiation region toward a recording medium in which unfixed image is formed; a second irradiation unit that irradiates a laser beam toward a second irradiation region; an image information acquiring unit that acquires image information of the first irradiation region; a coating information acquiring unit that divides the first irradiation region into one or a plurality of divided regions, and that acquires coating information that relates to the coating level on the basis of the image information; a transmission information acquiring unit that acquires transmission information that relates to the laser beam which is irradiated to the first irradiation region and passes through the recording material on the basis of the coating information; an irradiation control unit that controls the irradiation energy of the second irradiation unit based on the transmission information.
Abstract:
A fixing device includes a laser source that irradiates an image with laser light, the image being formed on a moving recording material with a thermoplastic image-forming material; and a support member arranged to face the laser source and having a curved portion, the curved portion being curved to extend in a recording-material moving direction and to protrude toward the laser source, the curved portion having a supporting portion of the recording material corresponding to at least an irradiation area of the laser light in a curved manner.
Abstract:
A holographic recording apparatus is provided and includes: a signal light generation section that generates signal light modulated according to digital data; a reference light generation section that generates reference light modulated by means of a pixel pitch; a adding section that adds, in proximity to a light-convergence position where the signal light and the reference light come close to each other or overlap each other, a low-order component of the signal light obtained by Fourier transform and a high-order component of the reference light obtained by Fourier transform, the high-order component of the reference light having a spatial frequency region differing from that of the low-order component of the signal light; and an illumination optical system that irradiate an optical recording medium with the added signal and reference light.
Abstract:
An image forming apparatus includes an obtaining unit, an image forming section, and a controller. The obtaining unit obtains color signals containing color components the number of which is n, n being a natural number. The image forming section forms an image on a medium, the image being based on the color signals obtained by the obtaining unit. The controller performs control so that colors in a color gamut that is not reproduced if area coverage modulation, not density modulation, is used for expression are included in the image by expressing densities of the n color components contained in the color signals obtained by the obtaining unit by using density modulation and area coverage modulation.
Abstract:
A hologram recording method, which records signal light onto an optical recording medium as a hologram, includes: placing a signal light region, which generates signal light, and a reference light region, which generates reference light, symmetrically with respect to an optical axis of coherent light by displaying, on a spatial light modulator which spatially modulates the incident coherent light, a pattern which divides a modulating region into a plurality of regions; generating signal light and reference light by modulating the incident coherent light by the spatial light modulator; simultaneously and coaxially illuminating, onto a reflecting-type optical recording medium, the signal light and the reference light generated from the signal light region and the reference light region disposed symmetrically to one another; and recording the signal light on the optical recording medium as a hologram.