Abstract:
The present invention is intended to provide a light-emitting diode (LED) structure which can be easily transferred onto another substrate, a transfer assembly whose adhesive strength with LED structures can be maintained in spite of repetitive transfer processes, LED structures and a transfer assembly for selectively transferring the LED structures, and a transfer method using the same.
Abstract:
A nitride semiconductor light-emitting device and a method for manufacturing same for improving the electrostatic discharge (ESD) characteristics of the nitride semiconductor light-emitting device. The light-emitting device includes an active layer formed flat using a low conductivity material, on a first conductive semiconductor layer having a v-pit structure on the upper surface thereof, and a second conductive semiconductor layer, or has a v-pit structure on a junction surface between a second conductive semiconductor layer and an active layer formed flat using a low conductivity material on a first conductive semiconductor layer having a v-pit structure on the upper surface thereof. Thus, a v-pit area has a thickness equal to or greater than a critical thickness and thus has very low conductivity, thereby preventing the flow of a current.
Abstract:
Disclosed is a device for manufacturing a skin-simulating phantom, which has properties that are similar to those of real skin, using a 3D printer so that layers are stacked to form a multi-layered structure and a nozzle tip connected to the 3D printer is used to provide roughness, and a method of manufacturing a skin-simulating phantom using the same. According to this present invention, solutions can be mixed, depending on the component constitution reflecting the optical properties of the skin, using a program that is set depending on the type of skin. The output condition of the 3D printer can be controlled using a program that is set so as to conduct a step of comparing measured thickness and roughness values to those of the real skin and performing feedback. The nozzle tip connected to the 3D printer can move up and down to provide roughness. Further, the multi-layered structure can be manufactured using the 3D printer, thereby outputting and embodying lesions.
Abstract:
A fluorescent image acquisition and projection apparatus for real-time visualization of an invisible fluorescent signal is provided. The apparatus visualizes an invisible fluorescent signal generated from a target object (a tissue of a living body, a cell of a living body, or the like) by using a photodetection unit and a projector in real time. The apparatus directly projects a visualized fluorescent signal onto a region of the target object where the invisible fluorescent signal is generated, thereby enabling users to determine and confirm the generation location of the fluorescence with the naked eye.
Abstract:
Disclosed herein is a method for quantifying a pigmented lesion using Optical Coherence Tomography (OCT). The method includes (a) irradiating light and receiving an interference signal produced by reflection of the light from first and second boundary layers of a pigmented lesion; and (b) calculating size information of the pigmented lesion using phase information of the interference signal. According to embodiments of the present invention, there is an advantage of allowing calculation of size information of a pigmented lesion using OCT, by increasing a measurement range in the axial direction to which beams are irradiated.
Abstract:
An object of the present invention is to provide a light emitting diode having a heterogeneous material structure and a method of manufacturing thereof, in which efficiency of extracting light to outside is improved by forming depressions and prominences configured of heterogeneous materials different from each other before or in the middle of forming a semiconductor material on a substrate in order to improve the light extraction efficiency.
Abstract:
There is provided a light emitting apparatus including: at least one pair of lead frames; a light emitting device electrically connected to the lead frames to emit ultraviolet rays; a body including a side wall surrounding the light emitting device, and a groove portion formed in an upper surface of the side wall to receive an adhesive; and a lens part disposed above the light emitting device and fixed to the upper surface of the side wall of the body by the adhesive.
Abstract:
A photovoltaic power generation module may include a ball lens that receives a medium from the outside or outputs a medium to the outside, receives sunlight that proceeds thereto from the outside when a medium is introduced thereto, and focuses the medium on one focal point, a solar cell that is disposed at a point at which sunlight is focused by the ball lens and produces electric energy from the sunlight, a support part supporting the ball lens and the solar cell and that being rotatable in a preset direction, a first motor that moves the solar cell in a direction in which the solar cell becomes distant from or close to the ball lens, a second motor that rotates the solar cell in a direction θ on a spherical coordinate system, and a third motor that rotates the support part in a direction φ on the spherical coordinate system.
Abstract:
Disclosed are a VCSEL diode and a VCSEL diode array having a common anode structure. An aspect of the present disclosure provides the VCSEL diode and the VCSEL diode array, which smoothly perform an operation and improve the quality of output light because the VCSEL diode and the VCSEL diode array have a common anode structure.
Abstract:
According to an embodiment, an augmented reality optical device comprises a light source unit including a plurality of light sources and outputting a plurality of light beams having different light paths, a display element receiving the light beams from the light source unit and reflecting augmented reality images, a reflector reflecting the light beams output from the light source unit and transmitting the augmented reality images reflected by the display element, a beam splitter reflecting the augmented reality images transmitted through the reflector and transmitting real-world light to a user's eye, and a controller controlling the light source unit and the display element.