Abstract:
Disclosed is a ferromagnetic film consisting of an alloy represented by a formula Co.sub.x Fe.sub.y T.sub.z, where T is an element selected from the group consisting of Ta, Ti, Zr, Hf, Mo, and W, and x, y, and z represent atomic % and satisfy 73
Abstract:
A magnetoresistive head includes an antiferromagnetic portion interposed between first and second spin-valve units. Sense current supply directions through the first and second spin-valve units are perpendicular to a head facing surface of a magnetic recording medium. The first spin-valve unit is formed of a first inner magnetic film, a first outer magnetic film and a nonmagnetic film interposed between and in direct physical contact with the first inner magnetic film and the first outer magnetic film. The second spin-valve unit is formed of a second inner magnetic film, a second outer magnetic film and a nonmagnetic film interposed between and in direct physical contact with the second inner magnetic film and the second outer magnetic film. The antiferromagnetic portion is formed of a first antiferromagnetic sublayer and a second antiferromagnetic sublayer laminated on the first antiferromagnetic sublayer. The first antiferromagnetic sublayer is in contact with the first inner magnetic film to apply a first exchange bias magnetic field to the first inner magnetic film in a direction perpendicular to the head facing surface of the magnetic recording medium. The second antiferromagnetic sublayer is in contact with the second inner magnetic film to apply a second exchange bias magnetic field to the second inner magnetic film in a direction perpendicular to the surface of the magnetic recording medium. The second exchange bias magnetic field has a polarity opposite to that of the first exchange bias magnetic field.
Abstract:
A member having a first and a second magnetic layer are magnetostatically coupled and laminated and the first magnetic layer formed on a magneto-resistive element, for creating the exchange coupling on the magneto-resistive element and the first magnetic layer. The member is formed by sequentially laminating a first ferromagnetic layer magnetized in a sense along the direction of the longitudinal bias of the magneto-resistive element, non-magnetic layer and second ferromagnetic layer magnetized in a direction opposite to the magnetized direction of the first ferromagnetic layer, for example.
Abstract:
A magnetic head including a magnetic film formed on a substrate. The magnetic film contains a Co-rich Fe alloy having a face-centered cubic phase in which the axis has been oriented in a direction perpendicular to the film surface, an insulating film formed on the magnetic film, and coils buried in the insulating film so as to generate a magnetic field. The Co-rich Fe alloy contains 15 to 24 atomic % of Fe. The magnetic head is manufactured by forming a magnetic film on a substrate, the magnetic film containing a Co-rich Fe alloy having a fcc phase in which the axis has been oriented in a direction perpendicular to the film surface. Next, an insulating film having coils for generating a magnetic field buried therein is formed on the magnetic film.
Abstract:
A remote control mechanism for controlling an outboard drive, throttle and transmission from either of two selected remote operators. When one operator is controlling the outboard drive, control of the outboard drive from the other operator is not permitted because of a series of interlocks. Each of the interlocks include a respective detent members and detent recesses. The detent recesses are sized larger than the detent members so as to provide some lost motion and to accommodate misalignments caused by flexure in the associated actuating cables.
Abstract:
Disclosed is a polyester copolymer obtained by reacting (A) a dicarboxylic acid component composed mainly of terephthalic acid or its derivative with (B) a glycol component comprising 15 to 85 mole % of (B-1) an aliphatic diol having 2 to 16 carbon atoms and 85 to 15 mole % of (B-2), 1,4-cyclohexanedimethanol in which the content of the trans-form is at least 80 mole %. This polyester copolymer has a low rate of crystallization and provides a shaped article having a high heat resistance.
Abstract:
A magnetic head assembly includes: a magnetic recording head, a head slider, a suspension and an actuator arm. The magnetic recording head includes a spin torque oscillator and a main magnetic pole. The spin torque oscillator includes, a first magnetic layer including at least one selected from the group consisting of a Fe—Co—Al alloy, a Fe—Co—Si alloy, a Fe—Co—Ge alloy, a Fe—Co—Mn alloy a Fe—Co—Cr alloy and a Fe—Co—B alloy, a second magnetic layer, and an intermediate layer provided between the first magnetic layer and the second magnetic layer. The main magnetic pole is placed together with the spin torque oscillator. The magnetic recording head is mounted on the head slider. The head slider is mounted on one end of the suspension. The actuator arm is connected to other end of the suspension.
Abstract:
According to one embodiment, a spin torque oscillator includes a field generation layer, a spin injection layer including a first layer and a second layer, and an interlayer interposed between the field generation layer and the spin injection layer, wherein the first layer is interposed between the second layer and the interlayer and includes a (001)-oriented Heuslar magnetic alloy or a (001)-oriented magnetic material having a body-centered cubic lattice structure.
Abstract:
An example magneto-resistance effect element includes a magnetization layer and a free magnetization layer of which magnetization direction changes depending on an external magnetic field. A spacer layer is located between the magnetization layer and the free magnetization layer, and has an insulating layer and an electric conductor passing current therethrough in a layer direction of the insulating layer. A diffusive electron scattering layer is disposed on said free magnetization layer for scattering diffusive electrons. The scattering layer includes a first nonmagnetic layer and a second nonmagnetic layer containing a first element and a second element, respectively, and a mixing layer disposed at a boundary between the first and second nonmagnetic layers and containing the first and second elements. The mixing layer has a thickness of 0.5 nm or more and 1.5 nm or less.
Abstract:
An example magnetic writing head includes a main magnetic pole, a coil to generate an ampere magnetic field to magnetize the main magnetic pole to cause the magnetized main magnetic pole to generate a magnetic field, and a laminated body. The laminated body includes a first magnetic layer having a coercivity lower than the magnetic field applied by the main magnetic pole and a second magnetic layer having a coercivity lower than the magnetic field applied by the main magnetic pole.