Abstract:
Provided are compounds of Formula (I): wherein R2, R3, R13, L and D2 are as defined in the specification, which are useful in the treatment and/or prevention of diseases or disorders mediated by deficient levels of glucokinase activity or which can be treated by activating glucokinase including, but not limited to, diabetes mellitus, impaired glucose tolerance, IFG (impaired fasting glucose) and IFG (impaired fasting glycemia), as well as other diseases and disorders such as those discussed herein.
Abstract:
Compounds of Formula (I): in which R1, R2, R7, R8, R9, R10 and A have the meanings given in the specification, are DP2 receptor modulators useful in the treatment of immunologic diseases.
Abstract:
Provided are methods for the synthesis of heterocyclic compounds such as benzimidazole carboxylic acid core structures having Formula Ia-1 and their synthetic intermediates: wherein Z, X1, X2, X5, R2 and R10 are as defined herein. Compounds of Formula Ia-1 and their synthetic intermediates can be used to prepare heterocyclic derivatives such as benzimidazole derivatives.
Abstract:
Disclosed are compounds of the Formulas I and V and pharmaceutically acceptable salts and prodrugs thereof, wherein R1, R2, R7, R8 and R9, W, X and Y are as defined in the specification. Such compounds are MEK inhibitors and useful in the treatment of hyperproliferative diseases, such as cancer and inflammation, in mammals, and inflammatory conditions. Also disclosed are methods of using such compounds in the treatment of hyperproliferative diseases in mammals and pharmaceutical compositions containing such compounds.
Abstract:
Provided are methods for the synthesis of heterocyclic compounds such as benzimidazole carboxylic acid core structures having Formula Ia-2 and their synthetic intermediates: wherein X1, X2, X5, R1, R2 and R4 are as defined herein. Compounds of Formula Ia-2 and their synthetic intermediates can be used to prepare heterocyclic derivatives such as benzimidazole derivatives.
Abstract:
Compounds of Formulas (I), (IIA) and (IIIA) are useful for inhibiting Raf kinase and for treating disorders mediated thereby. Methods of using compounds of Formulas (I), (IIA) and (IIIA) and stereoisomers and pharmaceutically acceptable salts thereof, for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions are disclosed.
Abstract:
This invention concerns quinazoline analogs of Formula I: where an A group is bonded to at least one of the carbons at the 5, 6, 7 or 8 position of the bicyclic ring, and the ring is substituted by up to three independent R3 groups. The invention also includes methods of using these compounds as type I receptor tyrosine kinase inhibitors and for the treatment of hyperproliferative diseases such as cancer.
Abstract:
This invention concerns quinazoline analogs of Formula I: where an A group is bonded to at least one of the carbons at the 5, 6, 7 or 8 position of the bicyclic ring, and the ring is substituted by up to three independent R3 groups. The invention also includes methods of using these compounds as type I receptor tyrosine kinase inhibitors and for the treatment of hyperproliferative diseases such as cancer.
Abstract:
Provided are compounds of formula I that are useful in the treatment and/or prevention of diseases mediated by deficient levels of glucokinase activity, such as diabetes meilitus. Also provided are methods of treating or preventing diseases and disorders characterized by underactivity of glucokinase or which can be treated by activating glucokinase.