Abstract:
One problem with current D2D communications is that there is no physical layer feedback (e.g., HARQ feedback) for unicast sidelink communications. That is, the transmitting UE does not know if the receiving UE receives and/or properly decodes the unicast transmission. Instead, current D2D communications require that a transmitting UE send a unicast sidelink communication multiple times to increase the chances that the unicast sidelink communication is received by the receiving UE. By blindly transmitting unicast sidelink communications multiple times, the spectral efficiency and radio resource utilization of the network is decreased. The present disclosure provides a solution to this problem by enabling HARQ feedback for unicast sidelink communications that improves the spectral efficiency and also enables better radio resource utilization for the network.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus determines a first link quality. The first link quality indicates a link quality of a first link between a first potential relay UE and the remote UE. The apparatus determines a second link quality. The second link quality indicates a link quality of a second link between the first potential relay UE and a first base station. The apparatus ranks the first potential relay UE relative to a second potential relay UE. The ranking of the first potential relay UE is based on a combination of the first link quality and the second link quality. The apparatus selects one of the first potential relay UE and the second potential relay UE for a relay connection based on the ranking of the first potential relay UE relative to the second potential relay UE.
Abstract:
An efficient approach for a mobile device apparatus that is out of network coverage to communicate with the network is desired. The apparatus may be a user equipment (UE). The apparatus receives one or more device-to-device (D2D) signals respectively from one or more proximate UEs. The apparatus measures signal strength of the one or more D2D signals based on signal strength of one or more resource elements used for receiving one and/or more reference signals of the one or more D2D signals or signal strength of one or more resource elements used for receiving one or more data parts of the one or more D2D signals. The apparatus selects one of the one or more proximate UEs as a relay UE based on the measurement of the signal strength of the one or more D2D signals, to communicate with the base station via the selected relay UE.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. The apparatus determines to communicate through D2D communication on a first radio-frequency channel. Additionally, the apparatus detects a transmission of a base station transmitting on downlink on a second radio-frequency channel. Additionally, the apparatus determines D2D transmission parameters based on the detected transmission of the base station. Further, the apparatus communicates through D2D using the determined D2D transmission parameters.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a wireless communication user equipment (UE). The apparatus transmits information in a device-to-device (D2D) communication to a second UE, the information indicating whether the second UE should use a direct feedback path to the UE or an indirect feedback path to the UE. The apparatus receives feedback through one of the direct feedback path or the indirect feedback path based on the information indicated in the D2D communication. The apparatus receives a D2D communication from a second UE. The apparatus determines whether to transmit feedback in response to the D2D communication via a direct feedback path to the second UE or via an indirect feedback path to the second UE. The apparatus transmits the feedback in response to the D2D communication in the determined feedback path.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In one configuration, the apparatus sends a transmission requesting a peer discovery signal and indicating whether the transmission includes a unicast request or a multicast request. In addition, the apparatus receives at least one peer discovery signal response based on the transmission. In another configuration, the apparatus receives a transmission requesting a peer discovery signal and indicating whether the transmission includes a unicast request or a multicast request. In addition, the apparatus sends a peer discovery signal response in response to the received transmission and on resources determined based on the indication whether the transmission includes a unicast request or a multicast request.
Abstract:
Disclosed are techniques for wireless communication. In an aspect, a position estimation entity receives measurement reports that indicate a non-reciprocity condition between link directions (e.g., as part of a multi-round trip time (RTT) position estimation session). In an aspect, the position estimation entity transmits request(s) to retrieve non-reciprocity source information, which may be used in position estimation derivation (e.g., to correct for error due to the non-reciprocity). In an aspect, the request(s) may be transmitted to a target UE and/or a wireless node involved in the position estimation session (e.g., serving gNB or TRP, another UE, etc.).
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a sidelink communication on a sidelink between the UE and another UE. The UE may transmit, on the sidelink, one or more feedback communications associated with the sidelink communication in a reporting period having a configurable periodicity and/or being configured to occupy an entire bandwidth of a resource pool configured for the sidelink. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. In some systems, a user equipment (UE) may identify a limited detection range, such as a Line of Sight (LoS) blockage or reduced coverage. The UE may request inter-vehicle assistance from a centralized control entity to overcome this limitation. The CE may transmit an indication of a set of target objects tracked by a sensor at the UE and a level of accuracy for tracking the set of target objects. In turn, the centralized control entity may request sensor information from one or more UEs with a complete LoS, a larger coverage area, or both. Based on the available sensor information, the centralized control entity may collect and transmit the sensor information back to the first UE in response to the request for assistance.
Abstract:
Techniques are disclosed for coverage-aware joint configuration for multi-network wireless communication. The techniques can include identifying a travel route for travel of a user equipment (UE) from a start location to a destination location, obtaining multi-network wireless coverage information for the travel route, wherein the multi-network wireless coverage information includes terrestrial network (TN) wireless coverage information and non-terrestrial network (NTN) wireless coverage information, determining a joint TN/NTN wireless communication configuration for the UE for the travel route based on the multi-network wireless coverage information, and sending the joint TN/NTN wireless communication configuration to the UE.