Abstract:
A charged particle beam reflector device is configured to include at least two electrostatic mirrors arranged with a predetermined interval on a linear optical axis, each having a through hole through which a charged particle beam radiated from an electron gun along a linear optical axis passes, and having a function of reflecting the charged particle beam or allowing the charged particle beam to pass through the through hole in accordance with an applied voltage, and a controller controlling an applied voltage to the at least two electrostatic mirrors. The controller applies, to each of the electrostatic mirrors, a reflection voltage allowing the electrostatic mirrors to reflect the charged particle beam at a predetermined timing so that the charged particle beam from the electron gun is reflected by the at least two electrostatic mirrors a plurality of times.
Abstract:
A medium position detection device including: a medium moving space (10) formed in which a plurality of media (30) can simultaneously move without overlapping in a predetermined direction; a light-guiding plate (11) which perpendicularly intersects the predetermined direction and defines the front of the medium moving space (10); a light source (20) disposed to emit light entering an end surface of the light-guiding plate (11); a reflecting section (13) formed in the light-guiding plate (11) so that the light having entered the light-guiding plate (11) is reflected by the reflecting section (13) and exits the light-guiding plate (11) through a back surface of the light-guiding plate (11); and detection means which detects the light from the light-guiding plate (11).
Abstract:
A single-axis illumination system for a multiple-axis imaging system, particularly an array microscope. A single-axis illumination system is used to trans-illuminate an object viewed with an array of imaging elements having multiple respective axes. The numerical apertures of the imaging elements are preferably matched to the numerical aperture of the illumination system. For Kohler illumination, the light source is placed effectively at the front focal plane of the illumination system. For critical illumination, the light source is effectively imaged onto the object plane of the imaging system. For dark field illumination, an annular light source is effectively provided. For phase contrast microscopy, an annular phase mask is placed effectively at the back focal plane of the objective lens of the imaging system and a corresponding annular amplitude mask is provided effectively at the light source. For Hoffman modulation contrast microscopy, an amplitude mask is placed effectively at the back focal plane of the objective lens of the imaging system and a slit is provided at a source of light of the illumination system. Structured illumination and interferometry, and a secondary source, may also be used with trans-illumination methods and apparatus according to the present invention.
Abstract:
An apparatus for detecting the position of a primary beam of electromagnetic radiation, the apparatus including a leaky mirror for reflecting the primary beam and for extracting from the primary beam a secondary beam and a position sensitive detector for detecting the spatial position of the secondary beam, wherein the leaky mirror comprises a material which has a transmissivity of less than 0.2 for the radiation of the primary beam and the position sensitive detector is arranged in the path of the secondary beam after transmission by the leaky mirror, the position of the secondary beam providing a measure of the position of the primary beam.
Abstract:
The invention relates to methods and devices for the reflection of positively and negatively charged particles of moderate kinetic energies at surfaces of any form. The invention consists in the production of a virtual or real surface for reflecting charged particles by creation of strongly inhomogenous high frequency fields of low penetration range into the space above the surface. The inhomogenous electric field is produced by supply of a high frequency voltage to a narrow grid pattern forming the surface and consisting of electrically conducting electrodes, isolated from each other. The electrode elements of the pattern are regularly repeated in at least one direction within the surface. The phases of the high frequency voltage are connected alternately to subsequent grid elements. The invention can be used to build new types of ion storage devices and ion guides for the transport of ions in moderate and high vacuum. New types of mass filters can be produced by this invention. In contrast to the well-known RF multipole rod systems, the invention leads to systems with easy production, high mechanical stability, and high efficiency for the thermalization of fast ions.
Abstract:
An image reading device, such as may be employed in a facsmile transmitter, laser beam printer, copying machine, or the like, in which assembly and alignment of optical components of the system is simplified and stray light is prevented from reaching a photoelectric conversion element. The optical system and the photoelectric conversion element are fixedly secured to a single supporting frame in a desired predetermined positional relationship. The supporting frame is detachably mounted on a mounting surface of an image reading device body. The optical system includes a filter or dust-proof transparent cover, an optical path changing mirror, and an image forming lens, all of which are secured to the supporting frame. A light-quantity-distribution correcting light-shielding plate may be provided in front of the image forming lens to provide an even distribution of image light on the photoelectric conversion element.