Abstract:
A species-specific metal clad segment on a waveguide, including a planar waveguide, allows controlled light leakage of light propagating through the waveguide by total internal reflection, to measure refractive index and identify chemical species. A waveguide sensor is designed for a particular chemical species by selecting a metal clad with an affinity for the species and by matching the refractive indices of the waveguide body, clad, metal clad segment and chemical species. Dual or multiple measurement methods use a pair or multiple metal clad segments of different specificity. The metal clad segment may include another material to provide a suitable refractive index while having the desired affinity for the chemical species or to provide a catalyst to react the species to form a reaction product which is more readily detected.
Abstract:
A sensor system comprises a fibe optic cable, or a fiber optic cable covered with a cladding, coated with a membrane that is sensitive to a particular substance to be detected. Contact with the material to be detected causes the membrane's index of refraction (normally less than that of the fiber core) to increase, decreasing the intensity of the light transmitted by the core. The fiber-optic sensor can be used to monitor one or more storage tanks for leakage by placing the fiber cable beneath the surface surrounding the tank(s).
Abstract:
The invention relates to a polyimide waveguide which is used as an optical sensor for the quantitative determination of liquids in the vapor phase, as well as for the determination of NH.sub.3, "NH.sub.4 OH", NO.sub.2 and N.sub.2 O.sub.5. The polyimide waveguide is composed of a cover layer, one or two layers of a polyamide-imide or a perfluorinated polyimide and a substrate.
Abstract:
A refractive index FOCS has a fiber optic core with a partly light transmissive thin metal film clad of an effective thickness and light transmissivity so that transmission through the core is strongly affected by the refractive index of a surrounding liquid or vapor medium. The metal clad and surrounding medium produce a localized refractive index at the core interface which modulates light transmission through the core as a function of the medium refractive index. The clad is made of platinum, or also of gold, rhodium, palladium, nickel, iron, cobalt, ruthenium, iridium, osmium, zinc, copper, silver, chronium, molybdenum, tungsten, vanadium, niobium, tantalum, titanium, zirconium or hafnium. The clad is also made of oxides of these metals, or metal compounds or alloys. With a fluorescent tip, the changes in the fluorescent signal are a measure of the medium refractive index. With a reflective tip, the changes in the reflected signal are measured. In a linear configuration, source and detector are placed at opposite ends of the fiber and changes in the transmitted signal are measured as a function of refractive index. Multiple measurements with multiple clads of different specificity can be made. The multiple clads can be on a single fiber or on separate fibers.
Abstract:
The present invention is directed to a device for detecting alcoholic content in a fuel by finding its refractive index, which is of such a construction that a refractive interface for the fuel is formed at an intermediate portion of a light transmission body; a light emitting element is provided at one end of the light transmission body, from which incident light is introduced into said refractive interface; and a single dimensional light position sensing detector is provided at the other end of the light transmitting body, into which the light refracted at the refractive interface is introduced. Alternatively, the device is of such a construction that a light emitting element and a single dimensional light position sensing detector are provided at one end of a light transmission body; a refractive interface and a reflecting surface are provided at the other end of the light transmission body, wherein an incident light from the light emitting element, which has entered into the refractive interface and has been refracted there, is reflected at the reflecting surface, after which the reflected light is again caused to enter into the refractive interface, and is subsequently caused to enter into the single dimensional light position sensing detector.
Abstract:
Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.
Abstract:
A method and apparatus for continually measuring the specific gravity of a flow liquid. The liquid is caused to flow across a flat measurement surface defined by a light transmissive shelf member. The measurement surface, i.e. the interface between the shelf member and liquid sample thereon, is illuminated by rays incident at angles greater than and less than a critical angle to reflect a boundary line whose position is dependent on the critical angle and thus the specific gravity of the liquid sample. The reflected boundary line is projected onto a photovoltaic surface which, together with detector electronics, determines the position of the boundary line with respect to a boundary line position associated with a reference liquid. The difference in boundary line position is used by the detector electronics to determine the specific gravity of the sample by a table lookup procedure.
Abstract:
A prism has at least two optical planes and one of the planes is a boundary plane with mixed fuel. On one of two planes, a light emitting element is mounted and illuminates light to the boundary plane through the prism. A light receiving element receives light reflected from the boundary plane and converts the reflected light into electrical signals. Then a detector modifies the electrical signals from the light emitting element according to the detecting result and outputs them as detecting signals representative of the fuel mixture ratio. The temperature of the mixed fuel may be detected by a temperature sensor in which case the electrical signals are also modified to compensate for temperature changes of the mixed fuel.
Abstract:
A blood glucose monitor which is particularly applicable for use as an implant for controlling an insulin pump, or as a portable device for use by a diabetic for home blood glucose monitoring. The glucose monitor measures the glucose level of blood by utilizing a refractometer which measures the index of refraction of blood adjacent to an interface with a transparent surface of the refractometer, by directing light at the interface to measure the index of refraction of the blood by the amount of radiation reflected by the interface, particularly light incident near the critical angle. In a preferred embodiment, polarized light is directed against an interface in an implant between a transparent material and the blood. As the glucose concentration in the blood changes, its index of refraction changes, as does the intensity of light reflected from the interface. The angle of incidence of the light is selected to be slightly less than the critical angle for total internal reflection, with the result that the reflected intensity varies dramatically with index of refraction and with glucose concentration. A differential amplifier compares the intensity of the light reflected from the blood and the intensity of the beam before reflection. The output signal from the differential amplifier indicates only a change in the intensity of the reflected light caused by a change in the glucose concentration from a standard setting.
Abstract:
The surface of a cellular body which is flat except for a number of cavities is examined by placing a transparent light refracting medium against the surface and transmitting light through the medium toward its interface with the body surface at such an angle of incidence to the interface that light incident on the interface at the body surface is refracted into the body and light incident on the interface at the cavities is totally reflected internally of the medium and then outwardly thereof. The reflected light produces an image having readily distinguishable zones of lightness and darkness indicative of the cavities and body material, respectively. The image is displayed in such manner as to enable either of the relatively dark and light zones to be counted. An optical coupling liquid is interposed between the body surface and the refracting medium to compensate for small gaps or irregularities in the body surface.