Abstract:
Open chain enediyne dihydroperoxides having eight carbons between the hydroperoxide groups that cleave DNA are disclosed, as are methods of making and using the same.
Abstract:
In a process for producing 2,6-dihydroxynaphthalene from 2,6-diisopropylnaphthalene, 2,6-diisopropylnaphthalene is oxidized in the presence of a specific proportion of a basic compound to hydroxylate or hydroperoxylate 2,6-diisopropylnaphthalene in a high conversion, and the resulting intermediate is then subjected to acid cleavage in the presence of hydrogen peroxide to produce 2,6-dihydroxynaphthalene in a high yield. The yield of 2,6-dihydroxynaphthalene increases by subjecting the reaction mixture containing the above intermediate to a purifying operation or dehydrating operation or adding acetone to it before it is submitted to the acid cleavage. 2,6-Dihydroxynaphthalene may be reacted with acetic anhydride to obtain 2,6-diacetoxynaphthalene.
Abstract:
A method of oxidizing secondary alkyl substituted naphthalenes with molecular oxygen in a liquid phase to hydroperoxides, carbinols or mixtures of these, which comprises: oxidizing the secondary alkyl substituted naphthalenes in the presence of an aromatic hydrocarbon having a fused ring which contains at least one methylene group therein in amounts of not more than about 1000 ppm based on the secondary alkyl substituted napththalene used.A process of producing isopropylnaphthols is also disclosed, which comprises: oxidizing diisopropylnaphthalenes with molecular oxygen in a liquid phase to diisopropylnaphthalene monohydroperoxides in the presence of (a) either an aromatic hydrocarbon having a fused ring which contains at least one methylene group therein, or a paladium catalyst soluble in the reaction mixture, and (b) an organic polar compound such as acetonitrile; and then acid-decomposing the diisopropylnaphthalene monohydroperoxide to the isopropylnaphthol.
Abstract:
This invention deals with a process for the production of hydroperoxides from their corresponding hydrocarbons via the use of certain ketones, particularly aryl ketones, generally having strong substituent electrophilic groups, as promoters. These promoters increase the rate of thermal oxidation and improve selectivity to the hydroperoxide products.
Abstract:
Process for the preparation of araliphatic dihydroperoxides which comprises oxidizing a hydrocarbon of the formula: ##STR1## with oxygen or an oxygen-containing gas, (2) extracting the resulting dihydroperoxide with an alkali metal hydroxide solution of a concentration of 1-12% thereby producing an aqueous extract and an organic raffinate, (3) neutralizing any alkali metal hydroxide remaining in the organic raffinate with carbon dioxide, thereby producing alkali metal carbonate or bicarbonate in the raffinate, (4) washing the alkali metal carbonate or bicarbonate remaining in the raffinate with wash-water, (5) extracting from the wash-water used in step (4) any dissolved hydroperoxides remaining therein with a hydrocarbon solvent, and (6) optionally recycling the hydroperoxide-containing hydrocarbon solvent into the process. The resulting wash-water effluent is free of polluting and contaminating materials.
Abstract:
An oxidizable hydrocarbon is oxidized in a reaction zone at elevated temperature in the presence of a liquid reaction medium by introducing the hydrocarbon and a feed stream containing molecular oxygen to the reaction zone under conditions sufficient to oxidize at least a portion of the hydrocarbon; withdrawing at least a portion of the liquid reaction medium from the reaction zone; passing at least a portion of the withdrawn liquid reaction medium to an oxygen injection zone located external to the reaction zone; contacting the liquid in said oxygen-injection zone with a gas stream containing molecular oxygen under conditions sufficient to form a two-phase gas/liquid mixture; and passing said two-phase gas/liquid mixture to the reaction zone as the feed of molecular oxygen thereto.
Abstract:
An aromatic primary hydroperoxide is produced by oxidizing a methyl-substituted aromatic compound in a liquid phase with a molecular oxygen-containing gas at a temperature of 80.degree.-150.degree. C. under a pressure of the atmospheric to 100 kg/cm.sup.2 gage in the presence of 8-300 parts by weight of an aliphatic tertiary hydroperoxide per 100 parts by weight of the methyl-substituted aromatic compound. The oxidation reaction is promoted, an aromatic primary hydroperoxide content of the reaction products is increased, whereas by-products are reduced, and a selectivity to the aromatic primary hydroperoxide is considerably increased.
Abstract:
Isopropylphenyl esters are converted to di- or trihydric phenols via a novel autoxidation of the esters at high conversion rates to the corresponding hydroperoxyisopropylphenyl esters in the presence of a catalyst combination comprising at least two members selected from the group consisting of (i) a metal phthalocyanine; (ii) a di-tertiary alkyl peroxide; and (iii) a tertiary alkyl hydroperoxide.Rearrangement of the hydroperoxyisopropylphenyl esters to the corresponding hydroxyphenyl esters and the hydrolysis of the latter compounds provides the phenols in overall yields (from the starting esters) heretofore not obtainable. Novel bis(hydroperoxyisopropylphenyl)carbonates are described which are attractive intermediates for the intermediate bisphenol carbonate or the final hydroquinone hydrolysis product.
Abstract:
A process for the oxidation of diethylbenzene comprising contacting an unpurified diethylbenzene feedstock with from about 0.01% to about 5.0% by weight of an alkaline earth metal oxide and concurrently and/or in a separate subsequent step contacting the diethylbenzene feedstock with a molecular oxygen-containing gas at a temperature between about 100.degree. C. and 170.degree. C. This process enables oxidation of diethylbenzenes to diethylbenzene hydroperoxide with a high degree of selectivity without the necessity of prior purification of the diethylbenzene feedstock, for example, by distillation or absorption techniques.
Abstract:
The invention relates to a method of preparing a composite suitable as an oxidizing component in a redox aqueous emulsion polymerization initiator starting with the relatively harsh oxidation of p-diisopropylbenzene with oxygen and involving a manipulative separation procedure for obtaining the effective oxidizing component. The invention also relates to the oxidizing component, the redox polymerization initiator and to the aqueous emulsion polymerization of selected unsaturated monomers.