Abstract:
A sensor unit and LEDs are arranged on a sensor board. A light guide is placed above the resultant structure to be parallel with the sensor. The two end portions of the light guide are bent downward at right angles, and the bent end portions serve as incident portions on which light beams from the LEDs are incident. Light entering the light guide emerges from an exit portion to be irradiated on an original. The light reflected by the original is read by the sensor. The direction in which the reflected light is incident on the sensor is parallel with the direction in which the light from each LED is incident on the incident portion. With this structure, in the image sensor, electrical connection between the LEDs, the sensor unit, and an external system is facilitated.
Abstract:
In an image sensor according to the present invention, a frame comprising a line light source, a light receiving element, and an original copy positioning member contacted to the original copy for positioning it being attached to a handy scanner housing. A transparent plate for passing the light emitted from the line light source and the reflected light from the original copy being attached to a frame so as to face the original copy. The transparent plate is further attached to the frame without any adhesive by being engaged with engaging portions of the frame.
Abstract:
A contactless image sensor comprises a light source for irradiating the light onto an original, photoelectric converting elements for photoelectrically converting the light from the original, an image pickup device for guiding the light from the original to the photoelectric converting elements, and a frame body for holding them. The frame body includes a light transmitting portion and a light non-transmitting portion, which are integrally pressing-out molded plastics. That is, the optical path portion and the optical guide of the frame body are made of transparent plastics and the other portions of the frame body are made of colored plastics having a light shielding performance.
Abstract:
An image sensor has a frame including a reading window formed therein at the top of the frame. The reading window is closed by a glass covering which is adhered to the frame through an adhesive. First and second grooves are provided in the frame to extend along the reading window. After the adhesive has been charged into the first groove, the glass covering is placed and pressed against the frame top so that the glass covering will be adhered to the frame top through the adhesive. At this time, any excess adhesive may be received and held by the second groove.