Abstract:
To compensate for non-linearity of an AD conversion unit and non-linearity of a DA conversion unit in an electronic system including the DA conversion unit and the AD conversion unit, an electronic system includes an A/D conversion unit, a D/A conversion unit, an AD conversion compensation unit, a DA conversion compensation unit, and a calibration unit. During a calibration operation period, the calibration unit sets an operating characteristic of the AD conversion compensation unit and an operating characteristic of the DA conversion compensation unit. The operating characteristic of the AD conversion compensation unit set during the calibration operation period compensates for non-linearity of AD conversion of the A/D conversion unit. The operating characteristic of the DA conversion compensation unit set during the calibration operation period compensates for non-linearity of DA conversion of the D/A conversion unit.
Abstract:
A method of analog to digital voltage conversion including: generating a quadratic signal based on an analog time varying reference signal; generating a ramp signal based on the quadratic signal; and converting an analog input voltage to a digital output value based on a time duration determined by a comparison of the analog input voltage with the ramp signal.
Abstract:
An A/D conversion device has means for generating a control clock signal having a cycle that is an integral multiple of a cycle of a reference clock signal; means for generating a shift voltage which varies every cycle of the reference clock signal while the cycle of the control clock signal is taken as one cycle, means for offsetting an analog signal by the shift voltage, means for A/D converting the offset analog signal every cycle of the reference clock signal signal, and means for averaging outputs from the A/D converter every cycle of the control clock signal.
Abstract:
There is provided an analog-to-digital converter capable of performing analog-to-digital conversion with good accuracy. The analog-to-digital converter in accordance with the present invention includes a dither generation circuit 11 which generates dither; an input polarity switching unit 1 which switches a polarity of an input signal; an integrator 2; an integrator output regulator circuit 5 which regulates an output voltage of the integrator 2; a window comparator 3; a control circuit 4 which uses the comparison result of the window comparator 3 to control the input polarity switching unit 1, the integrator output regulator circuit 5, and the window comparator 3 as well as to generate a digital signal. The dither generation circuit 11 generates dither in such a manner that a cycle in which the digital signal is read is an integral multiple of a dither cycle. Further, the dither generation circuit 11 generates dither in such a manner that the number of times the count value is generated in the first half of one cycle of the dither is different from the number of times the count value is generated in the second half cycle thereof.
Abstract:
Systems and methods for improving efficiency of a data converter. An example method generates a noise signal, alters the spectrum of the noise signal based on operation of an associated data converter, and supplies the altered spectrum noise signal to the associated data converter. The data converter is a digital-to-analog converter or an analog-to-digital converter. The altered spectrum noise signal is notched at frequencies of interest. The spectrum is altered by sending a signal generated by a random number generator to a delay device and adding the output of the delay device from the output of the random number generator. Also, the spectrum is altered by seeding first and second identical random number generators, delaying the operation of the first random number generator, and adding the output of the delayed first random number generator from the second random number generator.
Abstract:
The present invention provides an ADC apparatus and method for improving effective bit resolution and suppressing digital reconstruction artifacts with an anti-aliasing filter and an over-sampled input. ADC resolution can be increased by combining a dither signal with a sampled signal and then after digitization, filtering out the dithered signal. Designing a notch in the filter corresponding to the attenuation frequency attenuates residual effects.
Abstract:
The invention creates a method and a device for digitally transmitting analog signals, in which oversampling is performed in analog/digital and digital/analog converters. In this arrangement, a digital/analog conversion is performed which, in particular, is suitable for VDSL systems. A transmitted digital transmission signal (110) is supplied to a mixing unit (201) and in the mixing unit (201), a receive noise signal (211) applied to a receive noise source terminal (209) is superimposed on the digital transmission signal (110). An interpolation filter unit (203), in combination with a subsequent noise shaping device (205), provides an increase in the frequency bandwidth, resulting in suitable oversampling.
Abstract:
An A/D converter system has an A/D converter element (10) which provides a first predetermined number of digital output bits for each input analog signal. An addition device (12,70) adds linear slope potential to the input analog signal. A calculator (14) provides an average of a plurality of digital output signals of the A/D converter element so that the average has larger number of bits than the first predetermined number. The addition device is implemented by a time constant circuit (70) which functions as an integral circuit for an input analog signal, and functions as a differential circuit for a slope potential.
Abstract:
A dual range A/D converter includes means for appending a predetermined number N of random noise bits to the N least significant bits of the digital signals output from one of the dual A/D converters, thereby providing a total output bit resolution that is independent of the input analog signal.
Abstract:
A circuit for analog-to-digital conversion is disclosed comprising multiplexed ADCs. Dithering is introduced into the circuit before conversion and subtracted out of the resulting digital output stream. Gain control feedback loops are employed to eliminate non-unity gain error of the dither signal and multiplexed ADC differential gain errors. Correlation between the digital output stream and the dither signal is used to detect a non-unity condition and derive gain control feedback. Correlation with the dither signal is also used to detect gain differences between multiplexed ADCs and generate corrective feedback.