Abstract:
A microcomputer outputs correction data. A shading correction circuit performs a shading correction to a digital image signal using the correction data outputted from the microcomputer. A YC processing circuit generates a video signal from the digital image signal having undergone the shading correction, performs processing such as a gamma correction to the generated video signal, and outputs the video signal having undergone the processing such as the gamma correction.
Abstract:
A solid-state imaging device includes pixels 2 arranged two-dimensionally on a semiconductor substrate 1. In a predetermined area in each pixel is formed a light-sensitive area 3 for receiving incident light 11, and each pixel includes a photoelectric conversion portion 4 for converting the incident light into a signal charge. In at least some of the pixels, the center of the light-sensitive area is offset from the center of the pixel when seen from directly above a principal surface of the semiconductor substrate. Each pixel further includes a light-path change member 12a and 12b for deflecting incident light traveling toward the center of the pixel so as to be directed toward the center of the light-sensitive area. Thus, a solid-state imaging device simultaneously realizing the miniaturization of pixels and a high image quality is provided.
Abstract:
A pixel area of a megapixel solid-state color imaging device is divided into unit areas for pixel adding and all the pixels for the same color are added together in each unit area. Accordingly, the percentage of utilized pixels is raised to 100% and aliasing noise to low frequencies in a high-frequency video signal is greatly suppressed by a spatial LPF (low pass filter) effect of the pixel addition in the area units.
Abstract:
An imaging device free from discoloring under high temperature or high irradiation and having high color reproducibility is provided. Multilayer filters made of inorganic materials are provided above respective photoelectric conversion elements. The filters include red filters having predetermined spectra characteristics, green filters having predetermined spectral characteristics, and two kinds of blue filters having spectral characteristics different in peak wavelength.
Abstract:
A solid state imaging apparatus includes a plurality of pixels two-dimensionally arranged in the row direction and the column direction, and every two of the plurality of pixels that are adjacent to each other in the row direction or the column direction include color filters of different colors, respectively. A signal mixture circuit is provided in each same-row and same-color pixel group. Each said same-row and same-color pixel group consisting of ones of the plurality of pixels which are included in a pixel mixture unit to be a subject of pixel signal mixture, which are located in the same row, and which include color filters of the same color. The signal mixture circuit includes a combination of a capacitor and a transmission switch, stores pixel signals from pixels included in a same-row and same-color pixel group and mixes the signals together.
Abstract:
A color filter arrangement (11) is used, in which a plurality of filter units are each made of 2×2 arrangements of red (R), green (G), green (G) and blue (B) color elements. First, signal charges are added up for all pixels belonging to each of a plurality of pixel blocks made of quadratic arrangements of 3×3 of pixels, which are larger than the filter units (2×2 arrangement). Then, compressed color information for each of the pixel blocks is obtained from a result of the addition for each pixel block, taking the 2×2 arrangements of pixel blocks as large filter units.
Abstract:
A system and method for simultaneously accessing video data and Internet page data includes a format manager that inserts a video tag into page data to concurrently display a positionable video window and the page data upon the screen of a display device. The format manager reformats the displayed page data to avoid the video window when shown on the display device. The format manager also maintains the video window in a stationary position when a system user scrolls the page data in relation to the video window.
Abstract:
A solid-state image sensor includes photoelectric converters positioned either in a complementary color filter array or in the Bayer color filter array. The solid-state image sensor either adds together electric charges obtained by 9 photoelectric converters that relate to one color in each portion of six rows and six columns of the photoelectric converters so as to output a resulting electric charge as one pixel, or outputs the electric charges obtained by 9 photoelectric converters that relate to one color as 9 pixels without added together. By adding together the electric charges, the resolution of an image becomes one ninth of the case where the electric charges are not added together, and the sensitivity becomes 9 times higher than the same. The control unit not shown in the drawing determines a time length for photoelectric conversion assuming that the electric charges are not added together. If the determined time length is longer than a predetermined threshold, the actual time length for photoelectric conversion is reduced to {fraction (1/9)} of the determined time length, and an image is generated based on the resulting electric charges that are outputted after the electric charges stored in the photoelectric converters are added together.
Abstract:
A solid-state imaging apparatus includes a solid-state imaging device and a signal processing circuit. The solid-state imaging device includes: a plurality of photoelectric converting sections provided with color filters having different spectroscopic characteristics, and each converting light incident thereon into a charge and accumulating the charge, and a plurality of vertical charge transfer sections for vertically transferring the charge read from each of the photoelectric converting sections. A plurality of reading operations to read the charges accumulated in the photoelectric converting sections to the plurality of the vertical charge transfer sections are performed within a time duration for scanning an image for one image plane, and the charges read from the photoelectric converting sections are transferred through the vertical charge transfer section separately for each of the reading operations. The signal processing circuit includes: a plurality of color separation circuits each for performing color separation of signals based on the charges read by the plurality of reading operations and transferred separately; and a synthesis circuit for synthesizing the signals sent by the color separation circuits and outputting the resultant signal.
Abstract:
A solid-state imaging apparatus includes a solid-state imaging device and a signal processing circuit. The solid-state imaging device includes: a plurality of photoelectric converting sections provided with color filters having different spectroscopic characteristics, and each converting light incident thereon into a charge and accumulating the charge, and a plurality of vertical charge transfer sections for vertically transferring the charge read from each of the photoelectric converting sections. A plurality of reading operations to read the charges accumulated in the photoelectric converting sections to the plurality of the vertical charge transfer sections are performed within a time duration for scanning an image for one image plane, and the charges read from the photoelectric converting sections are transferred through the vertical charge transfer section separately for each of the reading operations. The signal processing circuit includes: a plurality of color separation circuits each for performing color separation of signals based on the charges read by the plurality of reading operations and transferred separately; and a synthesis circuit for synthesizing the signals sent by the color separation circuits and outputting the resultant signal.