Abstract:
A method for transmitting a data packet in a transmitting apparatus in a wireless communication system is provided. The method includes receiving first feedback information including buffer status information indicating information related to a status of a buffer included in a receiving apparatus from the receiving apparatus, determining a number of first data packets to be transmitted to the receiving apparatus based on the buffer status information, determining a number of second data packets which is identical to at least one of the number of first data packets based on a data packet loss rate for each of a plurality of paths, and encoding the determined number of first data packets and the determined number of second data packets and transmitting encoded first data packets and encoded second data to the receiving apparatus through each of the plurality of paths.
Abstract:
An apparatus and a method for transmitting and receiving a signal based on a mobility coverage class are provided. The method includes the operations of receiving, from a base station, information for estimating mobility and information for determining whether to return to a first mode, determining whether the terminal has mobility based on the information for estimating mobility, entering a second mode in which a predetermined coverage class is switched to the mobility coverage class when it is determined that the terminal has mobility, transmitting, to the base station, a second mode indicator indicating entry into the second mode, selecting one of coverage classes of the base station as the mobility coverage class, and transmitting and receiving a signal using a resource allocated to the selected mobility coverage class.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method for communicating by a user equipment with a macro cell base station and a small cell base station in a communication system is provided. The method comprises applying a first base station security key to a first communication link with the macro cell base station; generating a second base station security key to be used for a second communication link with the small cell base station based on the first base station security key; applying the second base station security key to the second communication link with the small cell base station; and communicating through at least one of the first communication link and the second communication link.
Abstract:
A method and an apparatus for controlling a waiting time related to determination of a radio link failure in a wireless communication system are provided. The method includes receiving a message from a network, if a first timer for determination of the radio link failure is running and the message includes timer information related to the waiting time, starting a second timer related to the waiting time based on the timer information, and if the second timer expires before expiration of the first timer, determining a channel situation of a serving cell as a situation of the radio link failure.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transmission rate after a 4G communication system such as LTE. In a wireless communication system of the present disclosure, a method for receiving, by a base station, a measurement result of a terminal includes: a process for allocating at least one of a plurality of measurement gaps, set for measuring a licensed band, for the measurement of an unlicensed band; a process for transmitting activation instruction information that instructs the activation of a measurement gap for the allocated unlicensed band measurement; and a process for receiving, from the terminal, a measurement result for the unlicensed band measured in the activated measurement gap by the terminal.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). An operating method of a user equipment (UE) in a mobile communication system is provided. The operating method includes receiving a service through a first enhanced node B (eNB) for a first time interval period from a first timing point; and receiving the service through a second eNB for a second time interval period from a second timing point, wherein the first timing point is different from the second timing point.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). An operating method of a user equipment (UE) in a mobile communication system is provided. The operating method includes receiving a service through a first enhanced node B (eNB) for a first time interval period from a first timing point; and receiving the service through a second eNB for a second time interval period from a second timing point, wherein the first timing point is different from the second timing point.
Abstract:
A method and an apparatus for efficiently reporting a master information block (MIB) decoding status of a neighbor cell in a wireless communication system are provided. The method includes receiving, by a user equipment (UE) and from an evolved Node B (eNB) of a serving cell, neighbor cell-related information for receiving an MIB of the neighbor cell, based on the neighbor-cell related information, decoding, by the UE, the MIB of the neighbor cell, and transmitting, by the UE, decoding information of the MIB to the eNB of the serving cell.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method for adding an operating channel for a user equipment (UE) that uses an unlicensed band channel by an evolved Node B (eNB) in a mobile communication system is provided. The method includes transmitting a first sensing indicator message indicating sensing of an unlicensed band channel, to at least one UE, determining a channel state by sensing the unlicensed band channel, receiving a first feedback message including a channel sensing result of the unlicensed band channel sensed by the UE, from the at least one UE, comparing the determined channel state with the channel sensing result received from the UE, and transmitting a control message indicating addition of the unlicensed band channel to the UE based on the comparison result.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). An apparatus of a Base Station (BS) in a wireless communication system is provided. The apparatus includes a wireless communication unit that is configured to receive an interference signal which cannot be controlled during a first period, and all interference signals during a second period with respect to a plurality of channels and a controller configured to determine a size of an interference signal which can be controlled, using a difference between a measurement of all the interference signals during the second period and a measurement of the interference signal which cannot be controlled, and select one of the plurality of channels according to the determined size of the interference signal which can be controlled.