Abstract:
A method of establishing synchronization with a base station by a mobile station in a communication system using beamforming includes: receiving a downlink signal transmitted through at least one transmission beam by using at least one reception beam; determining at least one of a propagation delay and a signal strength of the received downlink signal for each downlink transmission/reception beam pair through which the downlink signal is transmitted/received, wherein each downlink transmission/reception beam pair includes a transmission beam through which the downlink signal is transmitted from the base station and a reception beam through which the downlink signal is received by the mobile station; and establishing a downlink frame boundary of the mobile station by using the determined at least one of the propagation delay and the signal strength for each downlink transmission/reception beam pair.
Abstract:
The objective of the present invention is to provide services by effectively switching, by a terminal, a macro cell and a small cell on the basis of time in a communication system in which the macro cell and the small cell coexist. A method for operating a terminal in a wireless communication system comprises the steps of: transmitting, to a first base station and/or a second base station, information on a switching delay time required for the terminal to perform cell switching; and communicating through a resource of the first base station and a resource of the second base station which are allocated by considering the switching delay time.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The purpose of the present disclosure is to discover a small cell in a wireless communication system. An operation of a terminal in the wireless communication system includes receiving a first signal for informing of existence of a small cell according to a first measurement period and attempting to detect the first signal and a second signal for informing of a service coverage of the small cell according to a second measurement period after detecting the first signal. In addition, the present disclosure also includes embodiments other than the embodiment described above.
Abstract:
A method and apparatus for allocating resources for communication between Base Stations (BSs) in an in-band communication system can be provided by a BS. A method for allocating resources for communication between BSs, performed by a Mobile Station (MS) in an in-band communication system includes receiving information about an interference-free expected area from a BS communicating with the MS through an access link, transmitting to the BS feedback information indicating whether the MS is located in the interference-free expected area based on the information about the interference-free expected area, receiving from the BS a message requesting measurement of a fronthaul link for communication between BSs based on the feedback information, and transmitting a measurement result of the fronthaul link to the BS.
Abstract:
A method of establishing synchronization with a base station by a mobile station in a communication system using beamforming includes: receiving a downlink signal transmitted through at least one transmission beam by using at least one reception beam; determining at least one of a propagation delay and a signal strength of the received downlink signal for each downlink transmission/reception beam pair through which the downlink signal is transmitted/received, wherein each downlink transmission/reception beam pair includes a transmission beam through which the downlink signal is transmitted from the base station and a reception beam through which the downlink signal is received by the mobile station; and establishing a downlink frame boundary of the mobile station by using the determined at least one of the propagation delay and the signal strength for each downlink transmission/reception beam pair.
Abstract:
A method for managing a packet in a system supporting network coding includes receiving, from a relay, information on a packet to which the network coding is applied, receiving, from the relay, the packet to which the network coding is applied, confirming whether a packet required for an operation of the UE can be acquired from the received packet on the basis of information on the packet to which the network coding is applied, and storing packets into different buffers by distinguishing between the packet required for the operation of the UE and a packet not required for the operation of the UE. Other embodiments including an apparatus for managing a packet are also disclosed.
Abstract:
The objective of the present invention is to provide services by effectively switching, by a terminal, a macro cell and a small cell on the basis of time in a communication system in which the macro cell and the small cell coexist. A method for operating a terminal in a wireless communication system comprises the steps of: transmitting, to a first base station and/or a second base station, information on a switching delay time required for the terminal to perform cell switching; and communicating through a resource of the first base station and a resource of the second base station which are allocated by considering the switching delay time.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). An operating method of a user equipment (UE) in a mobile communication system is provided. The operating method includes receiving a service through a first enhanced node B (eNB) for a first time interval period from a first timing point; and receiving the service through a second eNB for a second time interval period from a second timing point, wherein the first timing point is different from the second timing point.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). An operating method of a user equipment (UE) in a mobile communication system is provided. The operating method includes receiving a service through a first enhanced node B (eNB) for a first time interval period from a first timing point; and receiving the service through a second eNB for a second time interval period from a second timing point, wherein the first timing point is different from the second timing point.
Abstract:
A method of providing an optimal transmission or reception (Tx/Rx) beam in a beamforming system. The method includes receiving a reference signal and selecting an optimal Tx/Rx beam that guarantees an optimal channel environment based on the received reference signal determining a possibility of occurrence of a Tx/Rx beam mismatch between the selected optimal Tx/Rx beam and a Tx/Rx beam used for transmitting information on the selected optimal Tx/Rx beam; and when there is the possibility of the occurrence of the Tx/Rx beam mismatch, performing at least one of widening a beam width of the Tx/Rx beam, increasing a number of Tx/Rx beams, reducing a period of a beam selection operation for selecting the optimal Tx/Rx beam, and reducing a transmission period of the reference signal. Other embodiments including a beamforming system are also disclosed.