Abstract:
The disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). A method for operating a user equipment in a wireless communication system includes determining service information required by a vehicle to everything (V2X) application and determining a V2X transmission mode. The method also includes determining quality of service (QoS) information required by the V2X application and acquiring sidelink radio bearer configuration information corresponding to the QoS information. The method further includes transmitting and receiving a V2X packet of direct communication using the acquired sidelink radio bearer configuration information.
Abstract:
The purpose of the present invention is to provide a method for increasing data transmission efficiency when performing packet duplication. A method for a terminal in a wireless communication system according to the present invention comprises the steps of: performing protocol data convergence protocol (PDCP) duplication in which an identical PDCP protocol data unit (PDU) is transmitted to a base station through each of a first logical channel and a second logical channel; when a request for retransmission of the PDCP PDU which has been transmitted through the second logical channel is received from the base station, retransmitting the PDCP PDU to the base station; and when the PDCP PDU has been retransmitted a predetermined number of times or more, receiving, from the base station, information indicating deactivation of the PDCP duplication.
Abstract:
A method performed by a terminal in a wireless communication system. The method includes receiving, from a cell of a base station including a plurality of cells connected to the terminal, time information including a reference system frame number (SFN) of a reference cell and performing communication with the base station based on the received time information.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transfer rate beyond a 4G communication system, such as LTE. An embodiment of the present invention may provide an operating method of a reception apparatus, the operating method comprising the steps of: receiving a signaling radio bearer (SRB) message; determining whether at least one SRB message has not been sequentially received; checking whether a reordering timer has expired, in case that the at least one SRB message has not been sequentially received; and determining a loss of the at least one SRB message in case that the reordering timer has expired.
Abstract:
The disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). A method of operating a user equipment (UE) and an apparatus therefor are provided. The method includes detecting an occurrence of a first state related to a state of a buffer for a packet data convergence protocol (PDCP) entity, transmitting a request message indicating the occurrence of the first state to a base station (BS), and receiving one or more packets from the BS based on transmission control performed based on the request message.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Disclosed is a method of operating a user equipment UE in a wireless communication system, including determining a data transmission rate requirement of a vehicle-to-everything (V2X) application and acquiring data rate information according to the required data transmission rate, transmitting the data rate information to a base station and acquiring a sidelink radio link control (RLC) function configuration parameter, and transmitting the acquired sidelink RLC function configuration parameter to another UE.
Abstract:
The present disclosure relates to a communication technique for converging a 5G communication system, which is provided to support a higher data transmission rate beyond a 4G system with an IoT technology, and a system therefor. The present disclosure may be applied to intelligent services (e.g., smart home, smart building, smart city, smart car or connected car, health care, digital education, retail business, security and safety related service, or the like) based on the 5G communication technology and the IoT related technology. The present disclosure discloses a method and an apparatus for supporting a multiple access in next generation mobile communication systems.
Abstract:
The present invention relates to a method and an apparatus for switching a data path in a wireless communication system supporting device-to-device (D2D) communication. The method for switching a path of a base station in a wireless communication system supporting device-to-device communication, according to the present invention, comprises the steps of: receiving, from a first terminal, a measurement report including a D2D identifier of a second terminal that performs a direct communication with the first terminal; sending a query to a D2D server for a network identifier corresponding to the D2D identifier of the second terminal; and determining whether to switch a direct path between the first terminal and the second terminal to a local path on the basis of the network identifier of the second terminal obtained from the D2D server.
Abstract:
The present invention relates to a method for performing a D2D discovery and a terminal using the same. Particularly, the present invention relates to a method for performing a D2D discovery, which compares a congestion level of another discovery slot selected randomly or according to a preset pattern with a threshold or a congestion level of a current discovery slot and determines a discovery slot to transmit a discovery message and a transmission period of the discovery message according to a result of the comparison, and a terminal using the same. The present invention relates to a method for performing a D2D discovery using discovery resources including a plurality of discovery slots, and a terminal performing the same, the method comprising the steps of: broadcasting a discovery message by using a first discovery slot; comparing a congestion level of a selected second discovery slot with a predetermined congestion level value; determining a discovery slot to broadcast the discovery message on the basis of a result of the comparison; and broadcasting the discovery message by using the determined discovery slot.
Abstract:
A method for supporting a device to device (D2D) communication in a base station of a mobile communication system according to one embodiment of the present specification comprises the steps of: determining one or more device groups including one or more devices among a plurality of devices; determining radio resources for measuring channels for the determined device groups; and transmitting, to the devices included in the respective groups, information on the radio resources for measuring the channels corresponding to the groups. According to the embodiment of the present specification, complexity of measuring a channel state in the D2D communication is reduced, and many more devices can measure the channel state using limited radio resources and can transmit and receive data. The present disclosure relates to re-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE).