Abstract:
An input sensing unit that utilizes conductive layers to sense various types of input. The input sensing unit may include a first conductive layer including first sensing electrodes; a second conductive layer disposed on the first conductive layer, the second conductive layer including second sensing electrodes and third sensing electrodes; and at least one insulating layer insulating the first conductive layer and the second conductive layer from each other. The input sensing unit senses at least one of a touch, a pressure, and a degree of moisture based on a change in capacitance between the conductive layers.
Abstract:
An electrode includes: a polymer layer including a non-conductive material; a conductive nanomaterial embedded in a top surface of the polymer layer; and a planarization layer on the polymer layer and on the conductive nanomaterial. The planarization layer includes a conductive material and a surfactant.
Abstract:
A display device includes a display panel including a plurality of pixels, an illuminance sensor to measure illuminance, and a display controller which includes a processor a brightness controllers. The processor calculates an external illuminance value with reference to a signal from the illuminance sensor. The brightness controller turns off at least one of the pixels and controls the brightness of the display panel when the calculated external illuminance value is in a first region. The first region may be, for example, in a mesopic region.
Abstract:
A method for manufacturing a tensile test piece according to one or more exemplary embodiments includes: preparing a polymer layer including a non-conductive material; forming a sacrificial layer on the polymer layer; forming a planarization layer on the sacrificial layer; shaping the polymer layer, the sacrificial layer, and the planarization layer into a dog-bone-shaped sample; etching at least a portion of the sample; and drying the sample.
Abstract:
A touch sensor may include a base substrate, a sensing unit including a first electrode and a second electrode provided on a same layer of the base substrate and not overlapping with each other, wherein a capacitance of the sensing unit is changed by a user's touch, and a cushion layer disposed on at least one surface of the sensing unit and configured to have a permittivity change in response to a pressure of the user's touch, wherein the cushion layer may include an insulator and conductive particles and the insulator may include an elastic material elastically deformed by the pressure of the user's touch.
Abstract:
An organic light emitting diode display includes a substrate, a thin film transistor on the substrate, a first electrode on and connected to the thin film transistor, a pixel defining layer on the first electrode and defining a pixel area, an organic light emitting layer on the first electrode and contacting the first electrode exposed in the pixel area, a second electrode on the organic light emitting layer, and a light blocking layer on the second electrode and exposing the second electrode at a position corresponding to the pixel area. The light blocking layer may include a first metal layer on the second electrode and exposing the second electrode at a position corresponding to the pixel area, a first intermediate layer covering the first metal layer, a second metal layer covering the first intermediate layer, and a second intermediate layer covering the second metal layer.
Abstract:
Provided is a method of manufacturing a polymer electret. The method of manufacturing a polymer electrets includes forming a polymer thin film, which includes a block copolymer (BCP) having two or more polymer chains covalently bonded together; forming a nano-structure of the BCP in which a first block formed by first polymer chains that self-assemble together and a second block formed by second polymer chains that self-assemble together are micro-phase-separated, by performing an annealing process on the polymer thin film; forming a porous polymer film with a nano-pore by selectively removing one of the first block and the second block; and charging the porous polymer film.
Abstract:
A light emitting element display device can be used for light therapy. The device includes: a display panel including a plurality of light emitting elements; a retarder plate configured to convert light emitted from the plurality of light emitting elements into circularly polarized light; and a selective polarizer configured to selectively convert light supplied from the retarder plate into linearly polarized light or allow penetration of the light.
Abstract:
A method for manufacturing a tensile test piece according to one or more exemplary embodiments includes: preparing a polymer layer including a non-conductive material; forming a sacrificial layer on the polymer layer; forming a planarization layer on the sacrificial layer; shaping the polymer layer, the sacrificial layer, and the planarization layer into a dog-bone-shaped sample; etching at least a portion of the sample; and drying the sample.
Abstract:
An electrode includes: a polymer layer including a non-conductive material; a conductive nanomaterial embedded in a top surface of the polymer layer; and a planarization layer on the polymer layer and on the conductive nanomaterial. The planarization layer includes a conductive material and a surfactant.