Abstract:
A circuit includes combinational circuit and sequential circuit elements coupled thereto. The circuit includes a multiplexor coupled to the combinational and sequential circuit elements, and a system register is coupled to the multiplexor. At least one portion of the combinational and sequential circuit elements is configured to selectively switch to operate as a random access memory.
Abstract:
Current tasks being executed in a set of modules of a signal processing system managed via an interface block are aborted so as to permit the execution of new tasks by pipelining eliminating transactions of said current tasks and executing transactions of the new tasks. Upon arrival of a signal to abort the current tasks, data and/or memory accesses present in said interface block are discarded.
Abstract:
A system includes a processor and a plurality of circuits connected through an interconnection network, wherein associated to each circuit is a respective communication interface configured for exchanging data between the respective circuit and the interconnection network. In particular, a debug unit is associated with each communication interface. Each debug unit is configurable as a data-insertion point, wherein the debug unit transmits data by means of the respective communication interface to the interconnection network, or each debug unit is configurable as a data-reception point, wherein the debug unit receives data by means of the respective communication interface from the interconnection network.
Abstract:
A communication interface couples a transmission circuit with an interconnection network. The transmission circuit requests transmission of a predetermined amount of data. The communication interface receives data segments from the transmission circuit, stores the data segments in a memory, and verifies whether the memory contains the predetermined amount of data. In the case where the memory contains the predetermined amount of data, the communication interface starts transmission of the data stored in the memory. Alternatively, in the case where the memory contains an amount of data less than the predetermined amount of data, the communication interface determines a parameter that identifies the time that has elapsed since the transmission request or the first datum was received from the aforesaid transmission circuit, and verifies whether the time elapsed exceeds a time threshold. In the case where the time elapsed exceeds the time threshold, the communication interface starts transmission of the data stored in the memory.
Abstract:
A communication system for interfacing a transmitting circuit with a receiving circuit includes a transmission interface for receiving data from the transmitting circuit and transmitting the data received over at least one data line in response to a transmission clock signal. The communication system also includes a reception interface configured for receiving the data in response to a reception clock signal and transmitting the data received to the receiving circuit. In particular, the system is configured for generating a plurality of clock signals that have the same frequency but are phase-shifted with respect to one another. In addition, during a calibration phase, the system is configured for selecting one of the clock signals for the transmission clock signal or reception clock signal via selecting at least one of the clock signals for transmission of test signals via the transmission interface and verifying whether the test signals received via the reception interface are correct. The system is further configured to use, during normal operation, the clock signal selected during the calibration phase for transmission of data.
Abstract:
An integrated circuit includes a clock control circuit coupled to a reference clock signal node and a plurality of circuits including a voltage regulator, a digital circuit, and an analog circuit. The voltage regulator, in operation, supplies a regulated voltage. The clock control circuit, in operation, generates a system clock. Input/output interface circuitry is coupled to the plurality of circuits and a common input/output node. The input/output interface circuitry, in operation, selectively couples one of the plurality of circuits to the common input/output node.
Abstract:
A system for interfacing an LC sensor includes a starter configured to selectively start an oscillation of the LC sensor. The system also includes an analog peak detector configured to determine a signal (Vpeak) being indicative of a peak voltage of the oscillation of the LC sensor and a detector configured to determine a state of the LC sensor as a function of the signal (Vpeak) determined by the analog peak detector.
Abstract:
A communication interface couples a transmission circuit with an interconnection network. The transmission circuit requests transmission of a predetermined amount of data. The communication interface receives data segments from the transmission circuit, stores the data segments in a memory, and verifies whether the memory contains the predetermined amount of data. In the case where the memory contains the predetermined amount of data, the communication interface starts transmission of the data stored in the memory. Alternatively, in the case where the memory contains an amount of data less than the predetermined amount of data, the communication interface determines a parameter that identifies the time that has elapsed since the transmission request or the first datum was received from the aforesaid transmission circuit, and verifies whether the time elapsed exceeds a time threshold. In the case where the time elapsed exceeds the time threshold, the communication interface starts transmission of the data stored in the memory.
Abstract:
A method includes: writing first data in a first partition of a first memory module and second data in a first partition of a second memory module, and selectively operating the first and second memory modules in a first operating mode and a second operating mode. The first operating mode includes writing parity bits for the first data in a second partition of the second memory module and parity bits for the second data in a second partition of the first memory module. The second operating mode includes writing further data instead of parity bits in the second partition of one or both the first memory module and the second memory module.
Abstract:
A circuit includes combinational circuit and sequential circuit elements coupled thereto. The circuit includes a multiplexor coupled to the combinational and sequential circuit elements, and a system register is coupled to the multiplexor. At least one portion of the combinational and sequential circuit elements is configured to selectively switch to operate as a random access memory.