Abstract:
Methods, systems, and devices for wireless communication are described. One technique includes identifying, by a user equipment (UE), a periodic time window for the UE to access a network, and transmitting an indication of the periodic time window to the network in a random access channel transmission. The technique also describes receiving, from the network based at least in part on the periodic time window, an indication of uplink resources allocated to the UE during the identified periodic time window. Another technique includes receiving, from a UE in a random access channel transmission, an indication of a periodic time window for the UE to access the network. The technique also includes determining, based at least in part on the periodic time window, uplink resources for the UE to access the network during instances of the identified periodic time window and transmit an indication of the uplink resources.
Abstract:
Examples described herein relate to managing reselection for a wireless communication device having a first subscription associated with a first Radio Access Technology (RAT) and a second subscription associated with a second RAT, including determining an occurrence of a barring procedure that bars a target cell or a target frequency for the first subscription for a barring duration and deprioritizing the target cell or the target frequency for the barring duration on the second subscription.
Abstract:
Examples described herein relate to apparatuses and methods for managing connection of a wireless communication device, including, but not limited to, receiving, by the wireless communication device, a call setup page from a network while in a connected mode, determining whether a data inactivity duration exceeds a threshold upon receiving the call setup page, transmitting a Scheduling Request (SR) probe to the network in response to determining that the data inactivity duration exceeds the threshold, determining whether an uplink grant corresponding to the SR probe has been received, and performing a local connection release in response to determining that the uplink grant corresponding to the SR probe has not been received.
Abstract:
A base station may transmit to a user equipment (UE) one or more indices corresponding to one or more carrier aggregation (CA) band combinations via a UE capability request. The transmitted UE capability requests may include an identifier that corresponds to the UE or the capability procedure between the UE and the base station. Then the UE may respond to the request by including the identifier and an indication of its capability corresponding to the transmitted indices in a UE capability response. Additionally the UE may include an aggregation indicator which signals to the network that the UE's capabilities are to be aggregated with additional indications of UE capability received in other UE capability responses that also include the identifier. Subsequent UE capability responses that include the identifier and an indication that the UE's capabilities may be aggregated will be combined with previously received UE capabilities.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive sensor information from a sensor associated with the user equipment, wherein the user equipment is in a deep sleep mode when the sensor information is received. The user equipment may deactivate the deep sleep mode, based at least in part on receiving the sensor information, to permit the user equipment to transmit or decode a network communication.
Abstract:
Methods and devices are disclosed for enabling improved scheduling of non-time bounded tasks across multiple subscriptions of a multi-subscription wireless communication device. A processor of the wireless communication device may determine whether the frequency utilized by a radio access technology (RAT) of a first subscription interferes with one or more frequencies utilized by RATs of other subscriptions. In response to determining that two or more of the subscriptions are non-interfering (i.e., RAT frequencies do not interfere) the processor may co-mingle non-time bounded tasks with time bounded tasks of the same subscription to produce consolidated task blocks. The task blocks may be temporal chunks of an execution queue in which tasks are scheduled continuously without interim idle periods. The processor may execute the first task block of each execution queue concurrently across subscriptions to reduce the amount of time that only a portion of the subscriptions are active or dormant.
Abstract:
Methods and apparatuses are presented for acquiring a wireless system by a multi-subscriber identity module (SIM) user equipment (UE). For example, an example method for acquiring a wireless system is presented that includes conducting, by a first subscription corresponding to a first SIM of the UE, a call using a shared radio resource of the UE. In addition, the example method may include predicting, upon completion of the call, a pilot timing error and a frequency error associated with a pilot signal of a network associated with a second subscription corresponding to a second SIM of the UE. In addition, the example method may include attempting to acquire the pilot signal based on the pilot timing error and the frequency error. As such, the example method may allow the multi-SIM UE to more quickly acquire a wireless system relative to legacy methods. Other aspects, embodiments, and features are also claimed and described.
Abstract:
A method for improving data throughput on a subscription includes: filtering data traffic throughput on a first subscription; comparing the filtered data traffic throughput to a threshold data rate; determining if the filtered data traffic throughput is greater than a threshold data rate value; and in response to a determination that the filtered data traffic throughput is equal to or less than the threshold data rate value, determining whether a tune away (TA) mode different than a first TA mode increases data traffic throughput on the first subscription.
Abstract:
Methods, systems and devices are provided for selecting one or more target devices for device-to-device (D2D) communication with a device. A device processor may determine whether a battery power level of the device is below a threshold battery power level. The device processor may establish a received power level threshold in response to determining that the battery power level of the device is below a threshold power battery level. The device processor may determine whether a received power level of a signal from target devices for D2D communication is above the received power level threshold. In response to determining that the received power level from a target device is above the received power level threshold, the device processor may permit D2D communication with that target device.
Abstract:
A MSIM UE may perform various network operations for each network subscription. However, if the MSIM UE employs subscriptions for different network operators, the UE may need to periodically tune away for an active data transmission. Such tune-away may cause the UE to miss scheduled communications from the network. Aspects of the present invention are directed to a mechanism by which a UE can notify a base station of the MSIM state, and thereby allow the network to improve scheduling for the UE to allow for periodic tune-away by the UE with minimal impact on scheduled communications. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may by a UE, such as MSIM UE. The apparatus may be configured to determine that the UE is associated with one or more network subscriptions, and transmit a subscription indication to a network device, wherein the subscription indication identifies a subscription state of the UE to the network.