Abstract:
An adjustable filter is responsive to a control signal to change a frequency response of the adjustable filter based on frequency spectrum information. The control signal may shift a center of the pass band from a first center frequency to a second center frequency and/or change a pass band bandwidth from a first bandwidth to a second bandwidth. In one example, the frequency spectrum information includes a status of an internal secondary radio. The frequency spectrum information may also indicate a region of operation where the frequency response is selected in accordance with the region.
Abstract:
Methods, systems, and devices for wireless communication are provided for mobility management for wireless communications systems that utilize a flexible bandwidth carrier. Some embodiments include approaches for determining bandwidth information, such as one or more bandwidth scaling factors N and/or flexible bandwidths, at a user equipment (UE), where the bandwidth information may not be signaled to the UE. Embodiments for determining bandwidth information include: random ordered bandwidth scaling factor approaches, delay ordered bandwidth scaling factor approaches, storing bandwidth scaling factor value in UE Neighbor Record approaches, spectrum measurement approaches, spectrum calculation approaches, and/or a priori approaches. Flexible bandwidth carrier systems may utilize spectrum portions that may not be big enough to fit a normal waveform. Flexible bandwidth carrier systems may be generated through dilating, or scaling down, time, frame lengths, bandwidth, or the chip rate of the flexible bandwidth carrier systems with respect to a normal bandwidth carrier system.
Abstract:
An example method may include receiving, by a computing device, control plane signaling associated with a first service to be performed by a first communication device, wherein the computing device is within a radio access network (RAN) and is in limited communication with a core network via a backhaul connection that is constrained due to a backhaul bottleneck condition. The example method may include conditionally permitting, by the computing device, a first feature of the first service based at least in part on the backhaul bottleneck condition. Another example method may include receiving, by a computing device, control plane signaling associated with a service to be performed by a first communication device, wherein the computing device is within a RAN and is in limited communication with a core network via a backhaul connection that is constrained due to a backhaul bottleneck condition.
Abstract:
An example method may include receiving, by a computing device, control plane signaling associated with a first service to be performed by a first communication device, wherein the computing device is within a radio access network (RAN) and is in limited communication with a core network via a backhaul connection that is constrained due to a backhaul bottleneck condition. The example method may include conditionally permitting, by the computing device, a first feature of the first service based at least in part on the backhaul bottleneck condition. Another example method may include receiving, by a computing device, control plane signaling associated with a service to be performed by a first communication device, wherein the computing device is within a RAN and is in limited communication with a core network via a backhaul connection that is constrained due to a backhaul bottleneck condition.
Abstract:
Various aspects described herein relate to providing analog interference cancelation in a shared antenna. A plurality of signals can be obtained at a plurality of reference points in a transmitter chain of a shared antenna. At least one reference point of the plurality of reference points from which to generate a cancelation signal and/or at least one injection point for injecting the cancelation signal can be selected based at least in part on expected analog interference cancelation metrics related to each of the plurality of reference points and/or the at least one injection point. The cancelation signal can be generated based at least in part on the at least one reference point and/or injection point. The cancelation signal can be injected in the injection point at a receiver chain of the shared antenna to cancel interference from signals generated at the transmitter chain of the shared antenna.
Abstract:
Aspects of the disclosure are directed to interference cancellation. A method of performing interference cancellation in a wireless device having a receiver, a coefficient controller and an analog interference cancellation (AIC) circuit includes utilizing the receiver to receive a signal; utilizing the coefficient controller to compute a first cost function value using a first set of coefficients, to compute a second set of coefficients using a first coefficient control algorithm, to compute a second cost function value using the second set of coefficients, to compare the second cost function value with the first cost function value, and to determine whether to apply the first set or the second set of coefficients based on the comparison; and utilizing the AIC circuit to apply the first or second set of coefficients to filter a reference signal and the receiver to subtract the filtered reference signal from the received signal for interference cancellation.
Abstract:
Methods, systems, and devices for wireless communication are provided for mobility management for wireless communications systems that utilize a flexible bandwidth carrier. Some embodiments include approaches for determining bandwidth information, such as one or more bandwidth scaling factors N and/or flexible bandwidths, at a user equipment (UE), where the bandwidth information may not be signaled to the UE. Embodiments for determining bandwidth information include: random ordered bandwidth scaling factor approaches, delay ordered bandwidth scaling factor approaches, storing bandwidth scaling factor value in UE Neighbor Record approaches, spectrum measurement approaches, spectrum calculation approaches, and/or a priori approaches. Flexible bandwidth carrier systems may utilize spectrum portions that may not be big enough to fit a normal waveform. Flexible bandwidth carrier systems may be generated through dilating, or scaling down, time, frame lengths, bandwidth, or the chip rate of the flexible bandwidth carrier systems with respect to a normal bandwidth carrier system.
Abstract:
A receive (Rx) chain of a wireless local area network (WLAN) transceiver may be used to assist a wireless wide area network (WWAN) transceiver in a user equipment (UE). A UE may use the WLAN Rx chain to autonomously scan and measure while the UE is connected to a first or home wireless network using its WWAN transceiver. When the UE is in a connected state, the WLAN Rx chain may be used to scan and take measurements for one or more second networks operated by a second wireless operator belonging to the same mobile virtual network operator (MVNO) as the first wireless network. In another example, the WLAN Rx chain may perform a set of inter-frequency reference signal time difference (RSTD) measurements based on observed time offsets between positioning reference signals (PRSs) from neighboring cells.
Abstract:
In a user equipment (UE) supporting multiple radio access technologies (RATs) and operating in an multiple-SIM multiple-active (MSMA) scenario, at least a portion of the wireless local area network (WLAN) transceiver may be used opportunistically to support the operation of the wireless wide area network (WWAN) transceiver to support the multiple subscriber identity modules (SIMs). For example, when a first SIM is in an active mode and using the WWAN transceiver for transmit and/or receive operations, at least a portion of the WLAN transceiver may be used in addition to the WWAN transceiver to support the WWAN operation of a second (or third, etc.) SIM. The WLAN transceiver may be used for transmit, receive, or both for the second SIM, while the first SIM continues to use the resources of the WWAN transceiver.
Abstract:
Methods, systems, and devices are provided for system information management in a wireless communications. A user equipment (UE) may identify a first value of a value tag in a first carrier, read a system information block (SIB) on the first carrier associated with the value tag, and identify a second value of the value tag in a second carrier. The UE may compare the first value with the second value and determine whether the read SIB on the first carrier may be utilized on the second carrier. Other techniques may include identifying a first value of a value tag for a first carrier linked with a SIB transmitted over the first carrier. The techniques may include determining a second value of the value tag for a second carrier indicating whether the SIB transmitted over the first carrier may be utilized on the second carrier.