Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station may provide, to a distributed unit (DU) of the base station, an indication of one or more candidate physical entity (PHY) profiles. The base station may receive, from the DU, an indication of a selected PHY profile, of the one or more candidate PHY profiles, to use for communication with a device, such as a user equipment. Numerous other aspects are described.
Abstract:
Disclosed are techniques for determining a distance (or range) between a first wireless entity and a second wireless entity. In an aspect, the first wireless entity transmits a first positioning reference signaling (PRS) signal to the second wireless entity at a first time, where the first PRS signal is received by the second wireless entity at a second time, and receives a second PRS signal from the second wireless entity at a third time, where the second PRS signal is transmitted by the second wireless entity at a fourth time. The first wireless entity enables the distance to be determined by a location computing entity, for example, by a location server, based on the first, second, third, and fourth times. The first wireless entity may be a mobile device or a base station and the second wireless entity may be the other of the mobile device or base station.
Abstract:
Disclosed are techniques for determining a distance (or range) between a first wireless entity and a second wireless entity. In an aspect, the first wireless entity transmits a first positioning reference signaling (PRS) signal to the second wireless entity at a first time, where the first PRS signal is received by the second wireless entity at a second time, and receives a second PRS signal from the second wireless entity at a third time, where the second PRS signal is transmitted by the second wireless entity at a fourth time. The first wireless entity enables the distance to be determined by a location computing entity, for example, by a location server, based on the first, second, third, and fourth times. The first wireless entity may be a mobile device or a base station and the second wireless entity may be the other of the mobile device or base station.
Abstract:
Techniques for intra- and inter-operator coordination on a shared communication medium are disclosed. A central coordination server may send an operating mode information message to coordinate operation of different points on the communication medium. An access point may receive such an operating mode information message and adjust one or more communication parameters. An access point may determine a level of timing synchronization with neighboring access points and send a synchronization advertisement message to an access terminal. An access terminal may receive a synchronization advertisement message and perform one or more measurements of the neighboring access points.
Abstract:
Techniques for managing re-contention on a shared communication medium are disclosed. In order to facilitate re-contending for access to the communication medium, an access point may adjust one or more uplink transmission parameters associated with a triggering condition for invoking a contention timer. In addition or as an alternative, the access point may mute transmission on the communication medium during one or more symbol periods designated for transmission. In addition or as an alternative, the access point may configure a timing advance to create a re-contention gap.
Abstract:
Techniques for managing contention on a shared communication medium are disclosed. Various techniques are provided to facilitate aspects such as reference signaling, downlink medium access, uplink medium access, resource reuse, channel structures, acknowledgment schemes, fairness, acquisition, random access, paging, mobility, inter-operator mitigation, and so on for a frame structure implemented on the shared communication medium.
Abstract:
Techniques for managing contention on a shared communication medium are disclosed. Various techniques are provided to facilitate aspects such as reference signaling, downlink medium access, uplink medium access, resource reuse, channel structures, acknowledgment schemes, fairness, acquisition, random access, paging, mobility, inter-operator mitigation, and so on for a frame structure implemented on the shared communication medium.
Abstract:
Methods and systems are disclosed for centralized self-organizing network (cSON)-aided small cell load balancing based on backhaul information. In an aspect, a cSON server receives periodic or event triggered backhaul capacity reports from each of the plurality of small cell base stations, a backhaul capacity report indicating an uplink and/or downlink capacity state of a backhaul connection over which a small cell base station of the plurality of small cell base stations is connected to a core network, determines load balancing assistance data for at least one of the plurality of small cell base stations based on the backhaul capacity reports received from each of the plurality of small cell base stations, and provides the load balancing assistance data to the at least one of the plurality of small cell base stations.
Abstract:
A timer parameter used for transitioning between radio protocol states is adapted based on a change of a handover parameter. For example, as a direct result of a change in a handover parameter such as time-to-trigger, offset, or hysteresis, an inactivity timer that is used for switching an access terminal from a connected state to an idle state may be adapted. As another example, as a direct result of a change in a handover parameter, a radio link failure (RLF) timer that is used for switching an access terminal to an RLF state may be adapted.
Abstract:
The present disclosure presents a method and an apparatus for a light active estimation mechanism for backhaul management at a small cell base station. For example, the method may include transmitting a first data packet from the small cell base station to a network entity, receiving a second data packet from the network entity in response to the transmission, calculating a time delay between the transmitting of the first data packet and the receiving of the second data packet, and determining whether or not a backhaul of the small cell base station is congested based on the calculated time delay. As such, light active estimation mechanism for backhaul management at a small cell base station may be achieved.