Abstract:
The present disclosure presents a method and apparatus for identifying an access point (AP) for selection by an access terminal (AT). For example, the method may include receiving a probe request by one or more APs from an AT, wherein the probe request is broadcasted by the AT to the one or more APs, generating load information and Received Signal Strength Indicator (RSSI) values of the probe request at the one or more APs, identifying an AP of the one or more APs for selection by the AT, wherein the AP for selection by the AT is identified by the one or more APs based at least on the load information and RSSI values generated at the one or more APs, and transmitting information of an AP identified by the one or more APs to the AT. As such, an improved mechanism for selecting an access point may be achieved.
Abstract:
Methods and apparatus are provided for receiver measurement assisted access point control. A method operable by a Wi-Fi network entity includes signaling at least one trigger indication to at least one station served by the Wi-Fi network entity for interference measurements. The method includes receiving interference measurements taken based on the at least one trigger indication from the at least one station. The method includes tuning transmitter parameters based on the received interference measurements.
Abstract:
Techniques are described for wireless communication. One method includes implementing, at a first node, a first access protocol to contend for access to a wireless communication medium shared by a plurality of nodes; determining whether a triggering event has occurred; and implementing, at the first node, a second access protocol to contend for access to the wireless communication medium based at least in part on a determination that the triggering event has occurred.
Abstract:
Described herein are techniques for reducing interference to non-cellular communications on an unlicensed band by a network entity sending/receiving cellular communications on the unlicensed band. For example, the technique may involve accessing a list of channels for cellular communication on the unlicensed band, the list having the channels in an order of priority for reducing interference to non-cellular communication on the unlicensed band. The technique may involve determining an interference criteria for a received signal, the interference criteria being based at in part on at least one of a received signal strength indicator (RSSI) or a duty cycle of the received signal. The technique may involve going through, in the order of priority, each channel in the list to identify a first channel that satisfies the interference criteria.
Abstract:
Aspects for reducing interference between networks are provided. A signal transmitted by a first network over a communications medium using an unlicensed frequency spectrum is decoded to determine one or more parameters of a packet in the signal. A level of utilization of the communications medium by the first network can be estimated based at least in part on a signal strength of the signal and the one or more parameters. A time for communicating in a second network over the communications medium using the unlicensed frequency spectrum can be adjusted based at least in part on the level of utilization of the communications medium by the first network.
Abstract:
The present disclosure generally relates to an object detection system. For example, aspects of the present disclosure relate to systems and techniques for performing object detection using sensor information, such as elevation and/or velocity information from one or more light-based sensors. One example apparatus generally includes one or more processors operably configured to: obtain sensor information indicating at least two objects in an environment; determine at least one of a velocity or an elevation associated with each object of the at least two objects; consolidate the at least two objects into a common object based on the at least one of the velocity or the elevation; and output an indication of the common object.
Abstract:
A method includes determining a current state of an environment of an autonomous agent, such as a vehicle. The method also includes determining, via a first neural network, a set of actions based on the current state. The method further includes determining whether further analysis of the set of actions is desired. The method selects an action from the set of actions using a model-based solution based on a reward and a risk of the action when further analysis is desired. The method also includes selecting the action from the set of actions according to a metric when further analysis is not desired. The method controls the autonomous agent to perform the selected action.
Abstract:
Embodiments include methods performed by a processor of a vehicle control unit for managing a driving condition anomaly. In some embodiments, the vehicle may receive a first driving condition based on data from a first vehicle sensor, receive a second driving condition based on data from another data source, determine a driving condition anomaly based on the first driving condition and the second driving condition, send a request for information to a driving condition database, receive the requested information from the driving condition database, and resolve the driving condition anomaly based on the requested information from the driving condition database.
Abstract:
A method includes determining a current state of an environment of an autonomous agent, such as a vehicle. The method also includes determining, via a first neural network, a set of actions based on the current state. The method further includes determining whether further analysis of the set of actions is desired. The method selects an action from the set of actions using a model-based solution based on a reward and a risk of the action when further analysis is desired. The method also includes selecting the action from the set of actions according to a metric when further analysis is not desired. The method controls the autonomous agent to perform the selected action.
Abstract:
Embodiments include methods performed by a processor of a vehicle control unit for managing a driving condition anomaly. In some embodiments, the vehicle may receive a first driving condition based on data from a first vehicle sensor, receive a second driving condition based on data from another data source, determine a driving condition anomaly based on the first driving condition and the second driving condition, send a request for information to a driving condition database remote from the vehicle, receive the requested information from the driving condition database, and resolve the driving condition anomaly based on the requested information from the driving condition database.