Abstract:
A method of transmitting a data frame by a transmitter in a WLAN system is provided. The method includes generating a data block including at least one data units respectively transmitted through at least one or more spatial streams to at least one receiver, transmitting first control information to the at least one receiver, transmitting second control information to each receiver, and transmitting the data block to the at least one receiver. The first control information includes a length indicator for the data block, a MIMO indicator indicating whether the data block is for SU-MIMO or MU-MIMO, and a spatial stream indication field including information about the number of the spatial streams. The second control information includes a FEC coding field indicating an encoding scheme applied to the data unit and an MCS field indicating an MCS applied to the data unit.
Abstract:
A method of power saving in a wireless local area network, and a wireless apparatus therefore are discussed. The method according to one embodiment includes acquiring a transmission opportunity (TXOP), receiving a signal field, the signal field including a group identifier, a number indicator and a power saving indicator, the group identifier indicating a group of recipients, the number indicator indicating a number of spatial streams, the power saving indicator indicating that the transmitting device allows the wireless device to enter a doze state. The method according to the embodiment further includes entering the doze state until the end of the TXOP if the power saving indicator indicates an allowance of entering the doze state during the TXOP, the wireless device is a member of the group of recipients, and the number of spatial streams to be received by the wireless device is equal to zero.
Abstract:
A method and apparatus for signal transmission in a Wireless Local Area Network (WLAN) system. The method according to one embodiment includes generating a first very high throughput (VHT) signal, generating a second VHT signal, and transmitting the first VHT signal and the second VHT signal. The first VHT signal includes an indicator indicating that the second VHT signal is to be transmitted by using a single-user multiple input multiple output (SU-MIMO) scheme or a multi-user multiple input multiple output (MU-MIMO) scheme. The first VHT signal and the second VHT signal are used to transmit control information, and the control information includes a modulation and coding scheme (MCS) index indicating an MCS used in the step of transmitting and further includes a spatial stream identifier indicating a number of spatial streams.
Abstract:
According to one embodiment, a method for a wireless local area includes: generating a medium access control (MAC) protocol data unit (MPDU) to be transmitted to a target station; generating a physical layer convergence procedure (PLCP) protocol data unit (PPDU) by attaching a PLCP preamble to the MPDU; selecting a transmission channel; and transmitting the PPDU to the target station over the transmission channel. Selecting the transmission channel includes: performing clear channel assessment (CCA) on a first channel to determine whether the first channel is idle; and only after it is determined that the first channel is idle, selecting the first channel and at least one idle second channel as the transmission channel. The PLCP preamble includes channel allocation information indicating a bandwidth of the transmission channel.
Abstract:
A method and terminal apparatus are described for allocating resources for transmitting a signal in a multiple-input multiple-output (MIMO) wireless communication system. An uplink signal is transmitted using L layers at a terminal in a multiple-input multiple-output (MIMO) wireless communication system. Modulation symbols are generated by modulating output bit sequences of an interleaver matrix by a unit of log2 Q bits. Q is a modulation order, and each of the output bit sequences has a size of L·log2 Q bits. The modulation symbols are mapped to the L layers and transmitted by using the L layers. The output bit sequences are generated by reading out entries of the interleaver matrix, column by column.
Abstract:
A method and apparatus are described for transmitting data. The method includes generating, by an access point (AP), a Physical Layer Protocol Data Unit (PPDU) including a signal field and a data field, and transmitting, by the AP, the PPDU to a station. The signal field includes a reception target indicator and an identifier field. The reception target indicator indicates whether a target of the PPDU is the AP or the station. The identifier field includes a local AP identifier identifying the AP when the reception target indicator indicates that the target of the PPDU is the station.
Abstract:
A method for power saving in a wireless local area network. The method according to one embodiment includes acquiring, by a wireless device, a transmission opportunity (TXOP); and receiving a signal field from the transmitting device. A group identifier indicates recipients, a number indicator indicates spatial streams, and a power saving indicator indicates that the transmitting device is allowed to enter a doze state during the TXOP. The method according to the embodiment further includes determining, by the wireless device, whether a first condition or a second condition is satisfied. The first condition is satisfied if the power saving indicator indicates an allowance, the wireless device is a recipient indicated by the group identifier, and the number of spatial streams is equal to zero. The second condition is satisfied if the power saving indicator indicates an allowance, and the wireless device is not a recipient indicated by the group identifier.
Abstract:
Methods and devices for transmitting or receiving data in a wireless local area network are provided. The method in one embodiment includes transmitting, by a transmitter, a first long training field (LTF) to a receiver; transmitting, by the transmitter, a very high throughput (VHT)-SIG-A field to the receiver; transmitting, by the transmitter, a second LTF for multiple input multiple output (MIMO) channel estimation to the receiver; transmitting, by the transmitter, a VHT-SIG-B field to the receiver; and transmitting, by the transmitter, a data field to the receiver, wherein the first LTF, the VHT-SIG-A field, the second LTF, the VHT-SIG-B field and the data field are sequentially transmitted, and wherein the second LTF and the data field are mapped to at least one spatial stream based on a mapping matrix but the first LTF and the VHT SIG-A field are not mapped to the at least one spatial stream.
Abstract:
There is provided a method of transmitting control information in a Wireless Local Area Network (WLAN) system, comprising transmitting first control information by means of cyclic shift delay diversity beam-forming and transmitting second control information. The first control information comprises information necessary for each of a plurality of target stations of the second control information to receive the second control information. The second control information beamformed and transmitted to the plurality of target stations.
Abstract:
A method of transmitting a Physical Layer Convergence Procedure (PLCP) frame in a Very High Throughput (VHT) Wireless Local Area Network (WLAN) system includes generating a MAC Protocol Data Unit (MPDU) to be transmitted to a destination station (STA), generating a PLCP Protocol Data Unit (PPDU) by adding a PLCP header, including an L-SIG field containing control information for a legacy STA and a VHT-SIG field containing control information for a VHT STA, to the MPDU, and transmitting the PPDU to the destination STA. A constellation applied to some of Orthogonal Frequency Division Multiplex (OFDM) symbols of the VHT-SIG field is obtained by rotating a constellation applied to an OFDM symbol of the L-SIG field.