Abstract:
A frequency translating repeater (250) for use in a time division duplex radio protocol communications system includes a processor (260), a bus (261), a memory (262), an RF section (264), and an integrated station device (264). An access point (210) is detected based on information transmitted frequency channels using a protocol. Detection is initiated automatically during a power-on sequence or by activating an input device such as a button. Frequency channels are scanned for a beacon signal and an access point chosen as a preferred access point based on a metric such as power level.
Abstract:
A service option overlay for a CDMA wireless communication in which multiple allocatable subchannels are defined on a reverse link by assigning different code phases of a given long pseudonoise (PN) code to each subchannel. The instantaneous bandwidth needs of each on-line subscriber unit are then met by dynamically allocating none, one, or multiple subchannels on an as needed basis for each network layer connection. The system efficiently provides a relatively large number of virtual physical connections between the subscriber units and the base stations on the reverse link for extended idle periods such as when computers connected to the subscriber units are powered on, but not presently actively sending or receiving data. These maintenance subchannels permit the base station and the subscriber units to remain in phase, time and power synchronism while maintaining optimal timing control over synchronization messages. This in turn allows fast acquisition of additional reverse link capacity as needed by allocating additional orthogonal codes within the same code phase and by varying the spreading factor of the codes, as well as by adding additional code phases.
Abstract:
A repeater environment is provided operative to deploy a feedback cancellation loop that is adaptively coupled with an antenna array such that a selected metric can be derived by deploying a selected filter bank having an automatic gain control operative to process the signal on a bin by bin basis and the derived metric can be applied to the antenna array and feedback cancellation loop combination to improve signal integrity and amplification. In an illustrative implementation, an exemplary repeater environment comprises, a transmitter, a receiver, an equalized feedback cancellation loop circuitry comprising a filter bank, the cancellation loop being operatively coupled to an antenna array. In the illustrative implementation, the feedback cancellation loop can receive signals as input from a cooperating antenna array and provide output signals such as a feedback leakage signal to a cooperating antenna array.
Abstract:
An illustrative embodiment of the present invention supports the transmission of data to a user on an as-needed basis over multiple allocated data channels. Data packets are transmitted in time-slots of the allocated data channels to corresponding target receivers without the need for explicitly assigning particular time-slots to a target user well in advance of transmitting any data packets in the time-slots. Instead, each data packet transmitted in a time-slot includes a header label or preamble indicating to which of multiple possible receivers a data packet is directed. The preamble also preferably includes decoding information indicating how a corresponding data payload of the data packet is to be processed for recapturing transmitted raw data.
Abstract:
A technique for implementing closed loop power control in a wireless system using a modulation that requires synchronization over the radio channel, which dynamically assigns coded channels on a demand basis. The technique maintains a proper power level, even when no traffic channels are allocated, by determining a link quality metric based upon the reverse link power received. This determination is made in response to a heartbeat signal sent at a rate which is only sufficiently fast to maintain code phase lock, for example, depending upon the expected maximum rate at which the subscriber unit will travel.
Abstract:
A multiple-antenna device is provided, comprising: a printed circuit board having a ground plane configured to provide electromagnetic isolation between a first side of the printed circuit board and a second side of the printed circuit board; a first non-conductive support member formed over the first side of the printed circuit board; a second non-conductive support member formed over the second side of the printed circuit board; a first antenna formed over the first non-conductive support member; and a second antenna formed over the second non-conductive support member, wherein the first antenna is electrically connected to a first feed point on a first portion of the printed circuit board that is not connected to the ground plane, and wherein the second antenna is electrically connected to a second feed point on a second portion of the printed circuit board that is not connected to the ground plane.
Abstract:
A protocol for optimizing the use of coded transmissions such as over wireless links. In this technique, interframes are first split into segments selected to be an optimum size according to transmission characteristics of the radio channel. Segments are assigned a position identifier and redundancy check sum. Segments are then assembled into blocks and a forward error correction algorithm is applied to the block to generate redundancy bits. The FEC block is then split up among available communication channels and forwarded to the receiver. The inverse process is applied at the receiver. Using this scheme, only segments containing erroneous data need to be resent. A large block size required for high performance forward error correction may therefore be used while at the same time minimizing latencies associated with the need to resend entire blocks when errors cannot be recovered.
Abstract:
An antenna control interface is integrated with common integrated circuit components, such as radio transceiver or baseband modem signal processing control logic. The antenna control interface controls the operation of an adaptive antenna array used with wireless communication system devices.
Abstract:
The present invention provides for making code rate adjustments and modulation type adjustments in a pseudonoise (PN) encoded CDMA system. Coding rate adjustments may be made by changing the number of information bits per symbol, or Forward Error Code (FEC) coding rate. A forward error correction (FEC) block size is maintained at a constant amount. Therefore, as the number of information bits per symbol are increased, an integer multiple of bits per epoch is always maintained. The scheme permits for a greater flexibility and selection of effective data rates providing information bit rates ranging from, for example, approximately 50 kilobits per second to over 5 mega bits per second (Mbps) in one preferred embodiment.
Abstract:
A directive antenna having plural antenna elements is arranged in a parasitic antenna array. Frequency selective components are connected to an active antenna element. Weighting structures are connected to passive antenna elements positioned substantially equidistant from the active antenna element. The active and passive antenna elements are connected by a space-fed power distribution system to produce independently steerable beams having spectrally separated signals.