Abstract:
A coating method is disclosed including disposing a coating composition into a fluidly communicating space defined by an internal surface of an article. The fluidly communicating space includes at least one aperture, which is sealed, forming an enclosed space. The internal surface and the coating composition are heated under autogenous pressure, coating the internal surface with the coating composition. The at least one aperture is unsealed, re-forming the fluidly communicating space. Another coating method is disclosed in which the coating composition is disposed into a reservoir which is connected in fluid communication with the enclosed space prior to heating under autogenous pressure, coating the internal surface with the coating composition. Yet another coating method is disclosed in which the coating composition and the article are disposed in a vessel, which is sealed, forming the enclosed space prior to heating under autogenous pressure, coating the internal surface with the coating composition.
Abstract:
A method comprising introducing a first casting material into a casting mold; applying directional solidification to the first casting material in the casting mold; introducing a second casting material into the casting mold, the second casting material having a different chemical composition than the first casting material; applying directional solidification to the second casting material in the casting mold; and forming a molded article, wherein the molded article comprises a first region
Abstract:
A ternary magnetic braze alloy and method for applying the braze alloy in areas having limited access. The magnetic braze alloy is a nickel-based braze alloy from the perminvar region of the Ni, Fe, Co phase diagram. The braze alloy includes, by weight percent 8-45% Fe, 0-78% Co, 2.0-4.0% of an element selected from the group consisting of B and Si and combinations thereof, and the balance Ni. The nickel-based braze alloy is characterized by a brazing temperature in the range of 1850-2100° F. The nickel-based braze alloy is magnetic below its Curie temperature.
Abstract:
A weld filler metal for a superalloy for welding is disclosed. The weld filler metal includes a preformed article that contains a first material with a melting point of approximately 2300 to 2500° F., and a second material with a melting point of approximately 1800 to 2200° F., wherein a ratio of the first material and the second material is variable. Related processes and articles are also disclosed.
Abstract:
A metal chemistry includes an amount of chromium weight of between about 9.0% and about 16% by weight, an amount of cobalt of between about 7.0% and about 14% by weight, an amount of molybdenum of between about 10% and about 20% by weight, an amount of iron of between about 1.0% and about 5.0% by weight, an amount of aluminum of between about 0.05% and about 0.75% by weight, an amount of titanium of between about 0.5% and about 2.0% by weight, an amount of manganese not to exceed about 0.8% by weight, an amount of carbon of between about 0.02% and about 0.10% by weight, an amount of a titanium+aluminum alloy of between about 0.55% and about 2.75% by weight, and an amount of nickel.
Abstract:
Laser cladding systems include a metal-filled wire comprising a metal shell surrounding a metal-filled core, wherein the metal-filled core comprises at least one of a powder metal or a fine wire metal, and, a laser that produces a laser beam directed onto at least a portion of a tip of the metal-filled wire to melt the metal shell and metal-filled core to produce a molten pool for depositing on a substrate.