Abstract:
A kind of stainless steel auger braid welding material and its manufacturing method are disclosed in the invention, involving the field of welding technique. The stainless steel auger braid welding material consists of core wires and several steel tendons, wherein the said welding wire is of a round-bar shape; the said steel tendons are wrapped on the external surface of the said core wire along the axial line and stranded around the circumference of the said core wire, and each steel tendon shall be stranded by winding several fine wires. For the stainless steel auger braid welding material adopted in the invention, its melting rate is fast.
Abstract:
A multi-component metal coating consumable is provided in the form of a rod comprised of two different rod portions coaxially butt joined together in end-to-end relationship, one of said rod portions being a composite consisting essentially of at least 10% by weight of coarse particles of a refractory carbide dispersed through an alloy matrix, the other of said rod portions comprising a compatible alloy matrix structure, such that a welding or brazing rod is provided having two working ends, one to augment the other during the application of a hard and wear resistant coating to a metal substrate.
Abstract:
A method and system to manufacture workpieces employing a high intensity energy source to create a puddle and at least one resistively heated wire which is heated to at or near its melting temperature and deposited into the puddle as droplets.
Abstract:
A method of establishing filler metal composition for joining components includes determining an initial desired filler metal chemistry, adjoining a first filler rod having a first portion of the desired filler metal chemistry with a second filler rod having a second portion of the desired filler metal chemistry to form a test filler rod, joining a first component formed from a first material to a second component formed from a second material at a weld joint with the test filler rod providing a filler metal portion of the weld joint, and testing the weld joint for desired mechanical, chemical, and weldability properties to establish a desired filler metal composition.
Abstract:
A process for implanting a precise quantity of radioactive metal on a metal substrate such as a cutting tool or other metal part subject to wear at the area or areas where the part is expected to wear during its operation. The presence of the radioactive spot can be sensed to determine the extent of wear during use. The radioactive metal is deposited from a wire formed of a core of the radioactive metal surrounded by a sheath of metal having a high thermal and electrical conductivity relative to the core. In operation, the wire contacts the metal surface under pressure and electric current is passed through the wire in order to (1) form a pit on the tool surface, (2) weld the radioactive metal in the pit and (3) evaporate a small portion of the conductive sheath adjacent the pit. A second current then is passed through the wire to break it near the bottom of the pit, leaving a small quantity of radioactive material welded to the bottom of the pit.
Abstract:
A consumable wire guide electrode for producing a high alloying effect on the weld deposit includes spaced inner and outer tubes defining a void therebetween filled with an alloying material and binder, the bore of the inner tube serving as a guide for the feed of a continuous wire electrode therethrough. The outer tube is advantageously exteriorly coated with flux such that as the wire and guide are consumed by an electric arc, a pool of alloyed weld metal with flux floating on the top is produced.