Abstract:
An apparatus for receiving a signal through an unlicensed band includes: a processor, a memory, and a radio frequency unit, wherein the processor executes a program stored in the memory to perform: receiving a secondary synchronization signal (SSS) in at least one remaining subframe except a subframe 0 or a subframe 5 of a plurality of subframes included in a discovery signal measurement timing configuration (DMTC), and detecting the SSS by using a subframe number of the subframe 0 or the subframe 5.
Abstract:
An operation method of a first terminal in a communication system may comprise receiving, from a base station, a control message including information on a resource allocated for a transmission indicator used for identifying the first terminal among a plurality of terminals performing uplink transmission; transmitting the transmission indicator to the base station using the resource allocated for the transmission indicator; and after transmitting the transmission indicator, transmitting an uplink signal to the base station using a preconfigured resource without an uplink grant.
Abstract:
Disclosed is a method for cell discovery. In a network in which a macro cell overlaps at least one small cell, when the carrier frequency used by the macro cell is different from the carrier frequency used by the small cell, the small cell transmits a discovery signal using the carrier frequency used by the macro cell, or the small cell transmits a discovery signal using a carrier frequency of the small cell that is different from the carrier frequency used by the macro cell.
Abstract:
A device to device (D2D) communication method based on a partial device control is disclosed. According to the present invention, the D2D communication method and, particularly, to a partial device control method for D2D communication a relates to, and provides a D2D resource allocation and release method, a D2D HARQ process operating method, a link adaptation method comprising D2D link power control and adaptive modulation and coding (AMC), a D2D control information signaling method, a CSI reporting method for D2D communication, and contents of a CSI report. The present invention can enhance the advantages of and compensate for the disadvantages of both methods through the combination of a base station control a base station control type D2D communication method and a device control type D2D communication method.
Abstract:
The present application relates to a method of generating a downlink frame. The method of generating the downlink frame includes: generating a first short sequence and a second short sequence indicating cell group information; generating a first scrambling sequence and a second scrambling sequence determined by the primary synchronization signal; generating a third scrambling sequence determined by the first short sequence and a fourth scrambling sequence determined by the second short sequence; scrambling the short sequences with the respective scrambling sequences; and mapping the secondary synchronization signal that includes the first short sequence scrambled with the first scrambling sequence, the second short sequence scrambled with the second scrambling sequence and the third scrambling sequence, the second short sequence scrambled with the first scrambling sequence and the first short sequence scrambled by the second scrambling sequence and the fourth scrambling sequence to a frequency domain.
Abstract:
Data transmission and reception is provided by configuring control channels in a wireless communication system using a plurality of carriers. User equipment (UE) may monitor physical downlink control channel (PDCCH) candidates within common search spaces (CSSs) and User Equipment-specific search spaces (USSs). If the UE is configured with cross-carrier scheduling, when two PDCCH candidates originating from a CSS and a USS, respectively, have cyclic redundancy check (CRC) scrambled by the same Radio Network Temporary Identifier (RNTI) and have a common payload size and the same first control channel element (CCE) index, the UE may interpret that only the PDCCH originating from the CSS is transmitted, thereby solving ambiguity of downlink control information (DCI) detection.
Abstract:
A device to device (D2D) communication method based on a partial device control is disclosed. According to the present invention, the D2D communication method and, particularly, to a partial device control method for D2D communication a relates to, and provides a D2D resource allocation and release method, a D2D HARQ process operating method, a link adaptation method comprising D2D link power control and adaptive modulation and coding (AMC), a D2D control information signaling method, a CSI reporting method for D2D communication, and contents of a CSI report. The present invention can enhance the advantages of and compensate for the disadvantages of both methods through the combination of a base station control a base station control type D2D communication method and a device control type D2D communication method.
Abstract:
A method of and an apparatus therefor searching a cell in a mobile station of a communication system in which a plurality of cells are grouped into a plurality of cell groups, and each cell group includes at least two cells. The method includes detecting a primary synchronization signal and a secondary synchronization signal from a received signal, and identifying a cell based on a combination of the primary synchronization signal and the secondary synchronization signal. The secondary synchronization signal is related to the cell group to which the mobile station belongs and the primary synchronization signal is related to the cell to which the mobile station belongs within the cell group.
Abstract:
A base station and terminal that transmit/receive scheduling information about a data channel through a first carrier and that transmit/receive a data channel corresponding to scheduling information through a second carrier having a carrier type different from that of the first carrier are provided.
Abstract:
Methods of discovery performed in a terminal are disclosed. A method of discovery, performed in a terminal, may comprise selecting a discovery physical channel on which discovery information is transmitted in a discovery frame comprising a plurality of transmission durations, and transmitting the discovery information through the selected discovery physical channel. Thus, efficient discovery between terminals may be performed and efficiency of resource usage can be enhanced.